
Two Combinatorial Problems on the Layout of
Switching Lattices

Anna Bernasconi Antonio Boffa Fabrizio Luccio Linda Pagli
Dipartimento di Informatica, Università di Pisa, Italy

{anna.bernasconi, antonio.boffa, fabrizio.luccio, linda.pagli}@unipi.it

Abstract—A non classical approach to the logic synthesis of
Boolean functions based on switching lattices is considered,
for which deriving a feasible layout has not been previously
studied. The problem presents new interesting combinatorial and
algorithmic aspects. Our basic assumptions are that the positions
of the switches in the lattice are fixed in the synthesis stage, and
the layout for connecting the subsets of switches with the same
input literal must be realized in superimposed planes through vias
that take the same switch area. The overall goal is to minimize the
number of layers needed. Since multiple choices of input literals
are possible for each switch, we first study how to assign a single
literal to each switch, to minimize the number of lattice portions
of adjacent cells associated to the same literal (Problem 1). Then
we study how to derive a feasible layout by building connections
onto different layers, to minimize the number of layers (Problem
2). Problem 1 is NP-hard. Problem 2 seems to be also intractable,
and exhibits limit instances that require an exceedingly number
of layers or are even unsolvable. Heuristic algorithms are then
developed for both problems and their encouraging performances
are proved on a set of known benchmarks.

Index Terms—Circuit Layout, Switching Lattices, Logic Syn-
thesis, NP-Complete Problems

I. INTRODUCTION

The logic synthesis of a Boolean function is the procedure
that implements the function into an electronic circuit. The
literature on this subject is extremely vast and large part of it
is devoted to two-level logic synthesis, where the function is
implemented in a circuit of maximal depth 2 [9]. In this paper,
we focus on a different synthesis method, based on switching
lattices. A switching lattice is a two-dimensional array of four-
terminal switches implemented in its cells. Each switch is
linked to the four neighbors and is connected with them when
the switch is ON, or is disconnected when the switch is OFF.
The idea of using regular two-dimensional arrays of switches
to implement Boolean functions dates back to a seminal paper
by Akers in 1972 [1]. Recently, with the advent of a variety
of emerging nanoscale technologies based on regular arrays of
switches, synthesis methods targeting lattices of multi-terminal
switches have found a renewed interest [2], [3], [6].

A Boolean function can be implemented in a lattice with
the following rules:

• each switch is controlled by a Boolean literal;
• if a literal takes the value 1 all corresponding switches

are connected to their four neighbors, else they are not
connected;

x3

x1 x3 x3

x1 x2

x2 x3 x3

TOP

BOTTOM

(b)

x3

x1 x2

x2 x3 x3

x3

TOP

BOTTOM

(a)

(c) (d)

x1

x3 x3

x3 x3

x1 x2

x2 x3

TOP

BOTTOM

x3

x3 x3

x1 x2

x2 x3 x3

TOP

BOTTOM

x3

x1 x1

Fig. 1: A four terminal switching network implementing the function
f = x1x2x3 + x1x3 + x2x3 (a); the corresponding lattice (b); the
lattice evaluated on the assignments 1,0,1 (c) and 0, 1, 0 (d), with grey
and white squares representing ON and OFF switches, respectively.

• the function evaluates to 1 for any input assignment that
produces a connected path between two opposing edges
of the lattice, e.g., the top and the bottom edges; the
function evaluates to 0 for any input assignment that does
not produce such a path.

For instance, the 3 × 3 network of switches in Fig. 1 (a)
corresponds to the lattice form depicted in Fig. 1 (b), which
implements the function f = x1x2x3 + x1x3 + x2x3. If we
assign the values 1, 0, 1 to the variables x1, x2, x3, respec-
tively, we obtain paths of gray square connecting the top and
the bottom edges of the lattices (Fig. 1 (c)), and f evaluates
to 1. On the contrary, the assignment x1 = 0, x2 = 1, x3 = 0,
on which f evaluates to 0, does not produce any path from
the top to the bottom edge (Fig. 1 (d)).

The synthesis problem on a lattice consists of finding
an assignment of literals to switches implementing a given
target function with a lattice of minimal size, measured as
the number of switches in the lattice. In [2], [3], Altun and
Riedel developed a synthesis method for switching lattices that
assigns at least one literal to each lattice position, with the
literal controlling the corresponding switch. If several literals
are assigned to a switch the choice of the controlling literal is
arbitrary.978-1-5386-4756-1/18/$31.00 c©2018 IEEE

137

Authorized licensed use limited to: University of Pisa. Downloaded on April 02,2023 at 14:43:06 UTC from IEEE Xplore. Restrictions apply.

Starting from the lattice obtained by the Altun-Riedel
method we consider two problems related to the physical
implementation of the circuit, both motivated by the following
considerations and assumptions.

1) Equal literals must be connected together, and to an
external terminal on one side (e.g. the top edge) of the
lattice. This may require using different layers, and vias
to connect cells of adjacent layers.

2) Connections can be laid out horizontally or vertically
(but not diagonally) between adjacent cells.

3) Each cell can be occupied by a switch, or by a portion
of a connecting wire, or by a via. No two such elements
can share a cell on the same layer.

4) The overall target is designing a layout with the mini-
mum number of layers. Since the problem is hard, it will
be relaxed to finding a reasonable layout by heuristic
techniques.

As a consequence the circuit will be generally built starting
from the original N × M lattice and superimposing to it a
certain number H of layers, to give rise to a multidimensional
grid of size N ×M × H . Note that the switches associated
with the same literal cannot be generally connected all together
on the same layer, so several subsets of these switches will be
connected on different layers and then connected through vias.
The degree of freedom arising from the multiple choices of
literals is exploited to enlarge these subsets (Problem 1). Then
the connection of the different subsets with the same literal by
themselves and by the external lead is addressed (Problem 2).

As said, we first consider the problem of assigning one
literal to each switch in case of different choices at the
switch. Consider the N ×M lattice as a non-directed graph
G = (V,E) whose vertices correspond to the switches (then
|V | = NM) and whose edges correspond to the horizontal
and vertical connections between adjacent switches (then
E = 2NM−N−M). We shall refer indifferently to the lattice
or to the graph; to switches or to vertices; and to connections
or to edges. Occasionally a vertex will be indicated with vi,
with 1 ≤ i ≤ N ·M , or with a pair of integers (h, k) denoting
the row and the column of the lattice where the vertex lays,
with 1 ≤ h ≤ N and 1 ≤ k ≤ M . Obviously the vertices
have degree 2 or 3 if they lay on the corners or on the borders
of the of the lattice, and have degree 4 if they are internal
to the lattice. Finally let L be the set of literals occurring
in the Boolean function. Each vertex vi is associated with a
non-void subset Li of L, from which one literal has to be
eventually assigned to vi. Once a single literal assignment
has been done for each vertex, an area denotes a maximal
connected subgraph of G (or connected portion of the lattice)
where all vertices have the same literal assigned. Note that if
two areas A1, A2 have the same literal they must be disjoint
and no two vertices a1 ∈ A1, a2 ∈ A2 may be adjacent in G.
We pose:
Problem 1. Find a literal assignment that minimizes the
number of areas.
Any literal assignment solving Problem 1, and the correspond-
ing family of areas, is called an MPA for minimal partition

assignment. The problem has been studied in [8] for general
graphs and for some of its variations, showing that is NP-hard
on a lattice. Hence we will study how to solve it heuristically.

After Problem 1 is solved, we have to choose how to
connect the different areas associated with the same literal
and then connect them to the external input leads. To this
end different layers are needed to attain all non-crossing
connections. Formally we pose the following problem, whose
complexity is discussed in Section III-B:
Problem 2: Find a minimum number of layers allowing to
connect together all areas with the same literal, and to connect
them to the input leads, using non-crossing connections.
The solution of Problem 1 gives the input for Problem 2. Since
both problems are hard we solve them heuristically, showing
experimentally that, for reasonable sizes of the lattice and of
the number of variables, our heuristics allow to find efficient
solutions.

II. SOLVING PROBLEM 1
The solution of Problem 1 may be simplified if a preliminary

examen of the lattice is performed with the attempt of reducing
the number of literals contained in the subsets associated to
the vertices. For this purpose the following Rule 1 may be
tested and applied if possible.
Rule 1. Let vj be a vertex; v1, v2, v3, v4 be the four vertices
adjacent to vi (if any); Lj , L1, L2, L3, L4 be the relative
subsets of literals. Apply in sequence the following steps:
Step 1. Let |Lj | > 1. If a literal x ∈ Lj does not appear in
any of the setsLi, for 1 ≤ i ≤ 4, cancel x from Lj and repeat
the step until at least one element remains in Lj .
Step 2. Let |Lj | > 1, and let Lk ⊂ Lj with k ∈ {1, 2, 3, 4}.
If a literal x ∈ Lj appears in exactly one set Lh with h ∈
{1, 2, 3, 4} and h 6= k, then cancel x from Lj and repeat the
step until at least the literals of Lk remain in Lj .

The following proposition be easily proved:
Proposition 1. The application of Rule 1 does not prevent
finding an MPA.

a b
c d

d g

d f

a b

c e

vh

vj

vk

Fig. 2: Canceling a literal from a multiple choice using step 2 of
Rule 1. Literals are denoted by a, b, c, d, e, f, g. Literal c in cells
vj , vh is canceled from vj .

An example of application of step 2 of Rule 1 is shown in
Fig. 2. A literal cancelation from Lj may induce a further
cancelation in an adjacent cell. In the example of Fig. 2, if
all the cells adjacent to vh except for vj do not contain the
literal c, the cancelation of c from Lj induces the cancelation
of c from Lh if step 1 of Rule 1 is subsequently applied to vh.
Before running an algorithm for solving Problem 1, the sets Li

may be reduced using Rule 1 through a scanning of the lattice.

138

Authorized licensed use limited to: University of Pisa. Downloaded on April 02,2023 at 14:43:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Example of starting lattice.

Moreover, as we have seen several successive scans may be
applied for further reduction until no change occurs in a whole
scan, although this is likely to produce much less cancelations
than the first scan. These operations constitutes the first phase
of any algorithm. Then, as the problem is computationally
intractable, an heuristic must be applied. The one proposed
here is the simplest possible, namely:

• scan the lattice row-wise: for any vertex vi reduce the
associated set of literals Li to just one of its elements
chosen at random;

• for any vertex vi not yet included in an area, build a
tree Ti spanning the maximal connected subgraph whose
vertices hold the same label of Ti and include the vertices
of Ti in a new area.

The experimental results discussed in the last section are
derived with this simplified approach. Better results would be
possibly obtained with more skilled heuristics at the cost of a
greater running time.

III. SOLVING PROBLEM 2
In order to better understand the nature of the problem let

us explain it with an example. The starting point for Problem
2 is a lattice of N ×M , positions, each associated to one of
the 2n literals, corresponding to the n input variables and their
complements; in practical applications we have 2n < N ×M ,
hence there are positions assigned to the same literal. As we
have mentioned before, all these positions must be connected
together in order to be reached in parallel from outside.

Fig. 3 shows an example of starting lattice of size 5×6 and
7 literals, (in this case directed variables only) indicated by
numbers and not by xi for simplicity. Let us suppose that the
side devoted to connections to outside is the top side of the
lattice. In the first layer the only connections we can lay out
are those of the areas on the top row with outside and those
connecting positions inside the same area. The connections of
the first layer are shown in Fig. 4 (a). The first layer can be
implemented only in this way for this example. In the first
layer there is no room for other connections, hence a new
layer must be added. For the already connected areas, it is
enough that a single position of the area goes to the next
layer. Obviously the final solution can be affected also by
the selection of the position we choose, however we do not
consider this possibility and we arbitrary choose this position:
in our example of Fig. 4 (a), the underlined literals indicate
that the corresponding position is selected.

A possible implementation of the second layer is shown in
Fig. 4 (b). Recall that connections cannot cross, hence not
all areas can be connected. Note that areas already connected

(a) (b)

(c) (d)

Fig. 4: (a) The first layer, (b) the second layer, (c) the third layer,
and (d) the last layer.

0 1 2
0 1 2 3
1 2 3 1
2 3 1 2

Fig. 5: A non solvable instance.

to the top side, even if not completely connected, don’t need
to be connected to the top side again. For example, the area
associated to literal 1, already connected to outside in layer 1,
is not connected to the top side in layer 2; areas associated to
literals 3, 6, 7 instead have still to be connected. Note also that
all literals with label 4 have been connected in a single area
and outside, therefore there is no need to connect this area to
the next layer. The next layer, layer 3 is depicted in Fig. 4 (c),
and the fourth and last layer is shown in Fig. 4 (d). The way
of selecting the connections is also arbitrary for layer 3, while
all the rest is connected in the last layer.

In principle we do not know if the given problem can be
solved in less than 4 layers. In fact, as we discuss below,
the problem is computationally quite difficult, if not at all
impossible to be solved. For a formal approach we define a
legal wiring an assignment of the connections to a layer such
that all the rules (1−4) introduced in Section I are respected.
Then Problem 2 is formalized as follows:
Instance: An array of size N×M positions, containing integers
in the range 1, . . . k, k < N ×M or empty.
Goal: Connect together all integers with the same value and
lead the connections to row 1, in a legal wiring, to obtain the
layout with the minimal number H of layers.

A. Impossible Instances
It is not difficult to verify that not all possible configurations

of the input lattice are solvable. For instance consider an
array where each row contains a cyclic shift of the literals
in the previous row, as in the example of Fig. 5. Since no
cell can be connected with others with the same literal, no
connections are possible in any layer. We now show that the
vast majority of problem instances are theoretically solvable,

139

Authorized licensed use limited to: University of Pisa. Downloaded on April 02,2023 at 14:43:06 UTC from IEEE Xplore. Restrictions apply.

although some may require an exceedingly high number of
layers to be practically solved. We have:
Proposition 2. A problem instance cannot be solved if and
only if in the initial literal assignment no two adjacent
cells share a same literal and, no matter how the multiple
assignments are resolved in Problem 1, each cell in row zero
contains a literal that occurs also in another cell.
Proof. If part. If no two adjacent cells share a same literal
initially, in the assignment of Problem 1 all areas contain
exactly one literal. Although the cells of row zero can be
connected to the output, there is no way to connect them to the
other cells with the same literal since all cells will be occupied
by a connection in all layers.
Only-if part. If at least one of the conditions stated in the
proposition does not hold, at least one cell in layer 2 is made
available (or “free”) for routing due to an area built in layer 1,
or to a connection to the output in that layer. Once a free cell
arises, it can be “moved” to any cell of the array by consecutive
movements of adjacent literals as in the well known 15-slide
game, and any literal adjacent to the free cell can similarly be
moved around to be brought adjacent to a cell with the same
literal. Proceeding with this strategy all cells with a same literal
can be linked together and brought to the output. �

Note that the strategy indicated in the only-if part of the
above proof may require a very large number of layers if only
a small number ν of free cells exist in a layer, as only ν
movements can be done in that layer. In particular, if only a
few cells are made free by the solution of Problem 1, i.e. if
layer 1 contains a large number of small areas, the routing
mechanism may not apply in practice. As we shall see, an
answer must be left to simulations on significant examples.
B. Hardness of Problem 2

Solving Problem 2, the cells containing the same literal in
any layer will be connected as trees (not as general subgraphs)
to avoid useless occupation of free cells. The problem of
minimizing the number of layers is related to the one of build-
ing the maximum number of such trees in any layer whose
edges do not intersect. If a 15-slide movement of free cells is
required the problem is NP-hard [10]. If such movements are
not required the problem has strong similarities with other
known NP-hard problems dealing with grid embedding of
graphs, as for example determining the Steiner tree among k
vertices on a grid [4], or determining the rectilinear crossing
number of a graph [5], etc. We have not been able to prove
that Problem 2 is NP-hard also in this simpler case, however
for its solution we rely on a heuristic algorithm that produces
satisfying results on a large class of benchmark instances. If
no tree can be directly built in a layer, as discussed in the
previous subsection, the heuristic stops declaring that routing
is impossible. Otherwise we have:
Proposition 3. Let α be the number of areas generated by
Problem 1 and k be the number of literals. An upper and
a lower bound to the number of layers are given by α and
dk/Me, respectively.

Proposition 3 is immediately proved by noting that at least
one pair of cells holding the same literal are connected in each

layer (upper bound), and k external leads must be reached from
the M cells of the upper row of the grid (lower bound). In the
example of Fig. 4 we have α = 15, k = 7, and M = 6. The
proposed layout with H = 4 layers is far from approaching
the upper bound 15, while is reasonably close to the lower
bound d7/6e = 2.

C. Heuristics for Problem 2
We propose a heuristic algorithm for solving Problem 2. In

this first approach, we never ”move” free cells of the array, as
in a 15-slide game, as this strategy might lead to layouts with
a very high number of layers; thus we consider impossible
all instances whose solvability requires such moves. This
limitation only slightly affects our experimental results on
benchmark circuits, as our algorithm failed to find layout for
theoretically solvable lattices only for about 4% of the lattices
(see Section IV).

A general greedy heuristic for Problem 2, could consist in
the following two main steps:
(i) Connect all adjacent cells with the same literal on the
first layer and then connect them to the external input leads,
whenever possible;
(ii) while there are literals still to be connected between them
and/or to the outside:

• add a new layer
• try to connect each pair of cells assigned to the same

literal
• try to connect each literal to outside, if not already

connected to the external leads.
Step (i) can be implemented in a standard way, visiting the
lattice to search and connect all positions inside an area of
adjacent cells assigned to the same literal. Moreover, all areas
with a cell on the top row can be connected to the external
leads. Note that this initial step is optimal, i.e., an optimal
minimization algorithm for the number of layers cannot do
better on the first layer.

To implement the second and main step of the heuristic,
we introduce the concept of free area and boundary cells, that
will be exploited to check whether two cells with the same
literal can be connected, and to search a path between them.

Definition 1. A free area in a lattice is a subset of free
adjacent cells. The boundary cells of a free area are the cells
surrounding it.

Free areas are computed through a scanning of the lattice,
in time linear in its dimension. An example of lattice with
three different free areas is shown in Fig. 6. Observe that all
boundary cells assigned to a single literal facing the same free
area can be connected, since we can use the free cells inside
the area to lay out the connections. Of course, this holds only
for the first literal of the boundary cell that will be processed,
while the others boundary cells, assigned to different literals,
can be connected only if the required connections do not cross
those already laid out on that area, since different connections
cannot share a position.

Our idea is to use free areas to avoid the search for
connections that are impossible to implement: we limit the

140

Authorized licensed use limited to: University of Pisa. Downloaded on April 02,2023 at 14:43:06 UTC from IEEE Xplore. Restrictions apply.

CAPITOLO 4. SOLUZIONI EURISTICHE

0 1 2 3 4 5 6 7 8 9
0 2 4 6 1 5 6 4 2 3 1
1 3 6 4 2 1 5
2 1 8 3
3 3 6 5 7 2 2 6 2
4 7 4 5 4
5 5 5 2
6 4 6 6 1 1 7
7 1 7 3 2 5 3
8 2 4 3 4 2
9 3 4 6 5 1 2 1

Tabella 4.2: Esempio di più aree libere

Analogamente a quanto appena detto partendo dalla casella (0,1) con valore quattro non si
potrà mai raggiungere la casella (9,1) anch’essa con valore quattro. Evitando di cercare que-
sti percorsi si risparmia molto tempo, e poiché le aree libere occupano porzioni del reticolo
disgiunte la ricerca di collegamenti in ogni area libera può procedere in parallelo rispetto
alle altre. Sempre prendendo come esempio la tabella 4.2, creando un thread per ogni area
libera, quindi un thread per l’area in rosso, uno per l’area in blu e uno per l’area in verde,
essi potranno essere eseguiti in parallelo. Si rende così ancora più veloce la ricerca di una
soluzione. L’unica porzione di strutture dati sulle quali i vari thred avranno concorrenza
e quindi dovranno accedervi in mutua esclusione è quella relativa alle caselle di con�ne.
Infatti esse sono le uniche caselle sulle quali più thread possono operare simultaneamente.
Queste situazioni si gestiranno con opportune variabili di lock, che obbligheranno i thread
ad accedere in mutua esclusione alle suddette zone critiche. Con questo metodo però non
si elimina del tutto il problema di ricercare percorsi che non posso esistere. Come prece-
dentemente detto, ogni qualvolta che si collegano due caselle, la matrice cambia in maniera
imprevedibile, ciò fa sì che anche all’interno di una stessa area libera, una volta collegata la
prima coppia di caselle, alcune caselle diventano non collegabili. È come se il collegamento
tagli l’area libera iniziale in più aree libere. Per trattare questo fenomeno si potrebbe agire
nel seguente modo: ad ogni collegamento si procede nel ricalcolo delle aree libere, ovvero si
potrebbe controllare quali e quante nuove aree libere si sono andate a creare, e trattarle poi
come aree libere indipendenti, magari lanciare altri thread che andranno a cercare eventua-
li collegamenti in esse. Questo procedimento ha il vantaggio di eliminare de�nitivamente il
problema di andare alla ricerca di caselle che non sono raggiungibili, però ha anche diversi
svantaggi, poiché la divisione ricorsiva di un’area libera in potenzialmente molte altre, ge-

23

Fig. 6: A lattice with three free areas.

Algorithm for layout computation

Function Thread (Free Area A)
for each pair of boundary cells c1, c2 with the same literal

SearchHeuristic(c1, c2)

Function main ()
Connect areas of adjacent cells with the same literal
Connect cells on the top row to the external leads
while there are cells still to be connected

Select a single position in each area for the next layer
Add a new layer
Compute the free areas
for each (free area A) StartNewThread (Thread (A))
JoinThread()

Fig. 7: Layout computation.

search to the connections traversing a free area, leaving the
search for connections between cells facing different areas to
the next iterations. In this way we can save computational time,
as cells around different areas cannot be directly connected
(see for example the two cells (1, 0) and (2, 9) assigned to
the literal 3 in the lattice in Fig. 6). Therefore, we structure
step (ii) of the proposed heuristic as follows: first compute all
free areas, then try to connect all boundary cells assigned to
the same literal facing the same free area. Since free areas
are mutually disjoint, the searches for connections can be
performed in parallel creating a thread for each free area.
The only portion of the lattice shared by multiple threads are
the boundary cells facing different free areas. These situations
are managed with appropriate lock variables, which force the
threads to access those cells in mutual exclusion.

As already mentioned, a drawback of this strategy is that
it does not completely eliminate the search for connections
that are impossible to implement on the current layer. Indeed,
as soon as two cells have been connected through a path
on a free area, some other cells facing this same area be-
come unreachable from one another, since the first connection
divided the free area in separate subareas. We could solve
this issue recomputing the free areas after each connection,
but this approach is computationally very heavy. Therefore,
we compute free areas only once, at the beginning of each
iteration, and then apply non-exhaustive search algorithms
within each area, in order to limit the search for non-existing
connections, still guaranteeing that mutually reachable cells
will be connected with high probability. The overall heuristic
is described in Fig. 7.

Let us now briefly discuss the possible implementations of

the search heuristics within each area. We are given a boundary
cell c1 that must be connected to a target cell c2, through a
path of distinct free cells in the free area A. This can be
formalized as a state space search, where the state space is of
size O(4N×M) as the number of cells in the area is O(N×M)
and there are at most four possible moves from each cell. As
a search in this space would be prohibitively expensive, we
can use heuristics to find solutions of high quality as quickly
as possible. We have considered best-first, beam searches,
greedy beam search, and hill-climbing heuristics [7], [11].
These heuristics select the next cell to visit according to an
evaluation function h that provides an estimate of the distance
from the target cell, both under Euclidean and Manhattan
distance. The first two heuristics provide better results, but
are computationally very expensive (their time complexity is
O(4N×M) and O(2N×M), respectively) and can be applied
only to small size lattices. The last two have time complexity
linear in the lattice size, but produce worse quality results,
as they fail in connecting some mutually reachable cells on
a given layer and the final layout may contain a very high
number of layers. Depending on the lattice size and on the
specific application, we can therefore select one of the four
heuristics, trading-off quality of results vs. scalability.

IV. EXPERIMENTAL RESULTS

In this section we report the experimental results related to
the physical implementation of switching lattices, according
to the rules (1-4) described in Section I. The aim of our
experimentation is to determine whether the physical imple-
mentation of the lattices, shaped as a multidimensional grid of
size N×M×H , where N and M are the number of rows and
columns of the lattice, and H is the number of layers, could
be considered technologically feasible. In our work we have
considered the lattices obtained applying the Altun-Riedel
method to the benchmarks taken from LGSynth93 [12], where
each output has been treated as a separate Boolean function.
Due to the limited space available, we report in the following
only a significant subset of the functions as representative
indicators of our experiments.

The experiments have been run on a IntelCore i7-4710HQ
2.50GHz CPU with 8 GB of main memory, running Linux
Ubuntu 17.10. The algorithm for computing the number of
layers has been implemented in C.

In this first experimental evaluation, we have analyzed
lattices where the literals assigned to the switches have been
chosen arbitrarily, in all cases of different choices at the
switch. In Table I we report (a subset of) the results of this
experimentations. The first column reports the name and the
number of the separate output function of the benchmark
circuit. The following two columns report the number of
different literals occurring in the lattice and its dimension
(N×M). Finally, the last four columns report the number H of
layers computed by the Algorithm in Fig. 7 with the best-first
and with the greedy beam search heuristic, together with the
corresponding running time (in seconds). The last row reports
the sum of the values of the corresponding column. The cases

141

Authorized licensed use limited to: University of Pisa. Downloaded on April 02,2023 at 14:43:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Number of layers for the lattice layout of a subset of
standard benchmark circuits, for lattices with arbitrary selection of
literals in all cases of different choices at the switch.

Best-first Greedy Beam
Bench lit N×M H Time(s) H Time(s)
add6(5) 24 156×156 8 757.59 9 0.01
adr4(1) 16 36×36 21 0.85 24 0.08
alu2(2) 16 10×11 4 0.01 5 0.01
alu2(5) 20 13×14 5 0.01 5 0.01
alu3(0) 8 4×5 4 0.01 4 0.01
alu3(1) 12 7×8 5 0.01 5 0.01
b12(0) 7 6×4 4 0.01 4 0.01
b12(1) 9 5×7 5 0.01 5 0.01
b12(2) 10 6×7 7 0.01 7 0.01
bcc(5) 28 27×9 11 0.04 12 0.01
bcc(7) 29 31×11 19 0.08 26 0.02
bcc(8) 29 31×12 17 0.07 20 0.02
bcc(27) 28 39×19 18 0.21 20 0.06
bcc(43) 28 20×10 9 0.02 10 0.01
bench1(2) 18 45×24 22 0.43 29 0.15
bench1(3) 18 31×16 29 0.19 45 0.04
bench1(5) 18 50×27 20 0.51 25 0.20
bench1(6) 18 35×21 25 0.33 32 0.08
bench1(7) 18 43×21 19 0.24 22 0.11
bench1(8) 18 44×24 22 0.45 28 0.14
bench(6) 10 8×4 6 0.01 6 0.01
br2(4) 18 18×8 9 0.01 10 0.01
br2(5) 19 14×4 16 0.01 16 0.01
br2(6) 19 16×5 14 0.01 14 0.01
clpl(3) 11 6×6 2 0.01 2 0.01
clpl(4) 9 5×5 2 0.01 2 0.01
co14(0) 28 92×14 12 0.38 14 0.05
dc1(4) 7 5×4 6 0.01 6 0.01
dc2(4) 11 10×9 8 0.01 8 0.01
dc2(5) 9 6×6 7 0.01 7 0.01
dk17(1) 10 8×2 6 0.01 6 0.01
dk17(3) 11 11×3 9 0.01 9 0.01
dk17(4) 12 9×3 – 0.01 – 0.01
ex1010(0) 20 91×46 34 29.22 40 1.35
ex4(4) 13 17×6 7 0.01 7 0.01
ex4(5) 27 35×45 14 1.12 15 0.08
ex5(32) 14 4×10 8 0.01 8 0.01
ex5(36) 11 2×8 4 0.01 4 0.01
ex5(38) 13 4×9 5 0.01 5 0.01
ex5(40) 15 6×12 10 0.01 14 0.01
ex5(43) 15 8×14 11 0.01 15 0.01
exam(5) 13 11×6 8 0.01 10 0.01
exam(9) 20 59×30 27 2.19 33 0.43
max128(5) 14 14×17 11 0.01 13 0.01
max128(8) 13 5×10 10 0.01 12 0.01
max128(17) 14 26×25 20 0.18 19 0.04
max1024(5) 20 117×122 31 1087.12 33 13.83
mp2d(6) 14 10×6 10 0.01 10 0.01
mp2d(9) 14 6×8 4 0.01 4 0.01
mp2d(10) 10 6×3 – 0.01 – 0.01
sym10(0) 20 130 × 210 11 2938.34 13 11.57
tial(5) 28 181×181 21 5622.57 30 40.99
z4(0) 7 15×15 7 0.01 9 0.01
z4(1) 14 28×28 11 0.12 13 0.01
Z5xp1(2) 14 12×11 10 0.01 10 0.01
Z5xp1(3) 14 18×18 13 0.03 16 0.01

658 10442,61 770 72,32

where the algorithm failed in finding a layout for theoretically
unsolvable lattices are marked with –. Considering the whole
set of benchmarks analyzed, the algorithm did not find a layout
for about 4% of the lattices.

By comparing the results, the values show that, as expected,
we obtain a better layout using the best-search heuristic, at

the expense of the computational time. Moreover, we note
that the increase in the number of layers computed with the
faster greedy beam search heuristic appears quite limited on
average, while it can be relevant on single lattices (see for
example benchmarks bench1(3) and tial(5)).

V. CONCLUDING REMARKS

We have presented the first study on connection layout for
two-dimensional switching lattices referring to the network
implementation proposed by Altun and Riedel [3]. We have
shown how to build a stack of consecutive layers where the
connections between switches driven by the same variable
can be laid without crossings, with the aim of minimizing
the number of layers. Since the problem is computationally
intractable we have designed a family of heuristics for finding
satisfactory solutions, reporting only the results of the fastest
and the slowest of the two on a standard subset of Boolean
functions, for space reasons.

Countless improvements are open. For theoretical complete-
ness, the NP-hardness of step 4 of our approach has to be
proved to fully justify the use of heuristics. Better heuristics
could be studied, and tested on larger data samples. The layout
for other switching lattices should be considered. The layout
rules should be possibly changed, in particular allowing more
than one wire traversing a switch area in the higher layers. We
are presently working on all these issues.

REFERENCES

[1] S. B. Akers, “A Rectangular Logic Array,” IEEE Trans. Comput., vol. 21,
no. 8, pp. 848–857, Aug. 1972.

[2] M. Altun and M. D. Riedel, “Lattice-Based Computation of Boolean
Functions,” in Proceedings of the 47th Design Automation Conference,
DAC 2010, Anaheim, California, USA, July 13-18, 2010, 2010, pp. 609–
612.

[3] ——, “Logic Synthesis for Switching Lattices,” IEEE Trans. Computers,
vol. 61, no. 11, pp. 1588–1600, 2012.

[4] C. C. N. Chu and Y. Wong, “FLUTE: fast lookup table based rectilinear
steiner minimal tree algorithm for VLSI design,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 27, no. 1, pp. 70–83, 2008.
[Online]. Available: https://doi.org/10.1109/TCAD.2007.907068

[5] J. Fox, J. Pach, and A. Suk, “Approximating the rectilinear crossing
number,” CoRR, vol. abs/1606.03753, 2016. [Online]. Available:
http://arxiv.org/abs/1606.03753

[6] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing Optimal
Switching Lattices,” ACM Trans. Design Autom. Electr. Syst., vol. 20,
no. 1, pp. 6:1–6:14, 2014.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. [Online].
Available: https://doi.org/10.1109/TSSC.1968.300136

[8] F. Luccio and M. Xia, “The MPA graph problem: definition and basic
properties.” Department of Informatics, University of Pisa. Technical
Report., 2018.

[9] G. D. Micheli, Synthesis and Optimization of Switching Theory. Mc-
Grow Hill, 1994.

[10] D. Ratner and M. K. Warmuth, “Finding a shortest solution for the N ×
N extension of the 15-puzzle is intractable,” in Proceedings of the 5th
National Conference on Artificial Intelligence. Philadelphia, PA, August
11-15, 1986. Volume 1: Science., 1986, pp. 168–172.

[11] S. J. Russell and P. Norvig, Artificial intelligence - a
modern approach, 2nd Edition, ser. Prentice Hall series in
artificial intelligence. Prentice Hall, 2003. [Online]. Available:
http://www.worldcat.org/oclc/314283679

[12] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0,” Microelectronic Center, User Guide, 1991.

142

Authorized licensed use limited to: University of Pisa. Downloaded on April 02,2023 at 14:43:06 UTC from IEEE Xplore. Restrictions apply.

