
1

A Learned Approach to Design Compressed Rank/Select
Data Structures

ANTONIO BOFFA, PAOLO FERRAGINA, and GIORGIO VINCIGUERRA, University of Pisa,
Italy

We address the problem of designing, implementing and experimenting with compressed data structures that
support rank and select queries over a dictionary of integers. We shine a new light on this classical problem
by showing a connection between the input integers and the geometry of a set of points in a Cartesian plane
suitably derived from them. We then build upon some results in computational geometry to introduce the first
compressed rank/select dictionary based on the idea of “learning” the distribution of such points via proper
linear approximations (LA). We therefore call this novel data structure the la_vector.

We prove time and space complexities of the la_vector in several scenarios: in the worst case, in the case
of input distributions with finite mean and variance, and taking into account the 𝑘th order entropy of some of
its building blocks. We also discuss improved hybrid data structures, namely ones that suitably orchestrate
known compressed rank/select dictionaries with the la_vector.

We corroborate our theoretical results with a large set of experiments over datasets originating from a variety
of applications (Web search, DNA sequencing, information retrieval and natural language processing) and
show that our approach provides new interesting space-time trade-offs with respect to many well-established
compressed rank/select dictionary implementations. In particular, we show that our select is the fastest, and
our rank is on the space-time Pareto frontier.

CCS Concepts: • Theory of computation→ Data compression; Predecessor queries.

Additional Key Words and Phrases: Compressed data structures, Rank/Select dictionaries, Piecewise linear
approximations, High order entropy, Algorithm engineering

ACM Reference Format:

Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra. 2022. A Learned Approach to Design Compressed
Rank/Select Data Structures. ACM Trans. Algor. 1, 1, Article 1 (January 2022), 29 pages. https://doi.org/10.1145/
3524060

1 INTRODUCTION
We consider the classical problem of representing, in compressed form, an ordered dictionary 𝑆 of
𝑛 elements drawn from the integer universe [𝑢] = {0, . . . , 𝑢 − 1} while supporting the following
operations:
• rank(𝑥). Given 𝑥 ∈ [𝑢], return the number of elements in 𝑆 that are less than or equal to 𝑥 ;
• select(𝑖). Given 𝑖 ∈ {1, . . . , 𝑛}, return the 𝑖th smallest element in 𝑆 .

A preliminary version of this article appeared in [8]. The present contribution includes several new results as detailed at the
end of Section 1.2.
Authors’ address: Antonio Boffa, antonio.boffa@phd.unipi.it; Paolo Ferragina, paolo.ferragina@unipi.it; Giorgio Vinciguerra,
giorgio.vinciguerra@phd.unipi.it, University of Pisa, Largo Bruno Pontecorvo 3, Pisa, Italy, 56127.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
1549-6325/2022/1-ART1
https://doi.org/10.1145/3524060

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3524060
https://doi.org/10.1145/3524060
https://doi.org/10.1145/3524060

1:2 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

Despite their simple definitions, rank and select are powerful enough to solve the ubiquitous
predecessor search problem [47], which asks for the largest 𝑦 ∈ 𝑆 smaller than a given element
𝑥 ∈ [𝑢]. Indeed, it suffices to execute𝑦 = select(rank(𝑥−1)), where we assumed that select(0) = −1
to denote the absence of a predecessor for 𝑥 in 𝑆 .

Another way of looking at these operations is via the indexing of a binary array 𝐵𝑆 of length 𝑢
which is the characteristic bitvector of 𝑆 over the universe [𝑢]. This way, rank(𝑥) counts the
number of bits set to 1 in 𝐵𝑆 [0 . . 𝑥], and select(𝑖) finds the position of the 𝑖th bit set to 1 in 𝐵𝑆 . This
interpretation allows generalising the above operations to count and locate symbols in non-binary
arrays [30, 33, 45], which are frequently at the core of several text mining and indexing problems.

It is therefore unsurprising that rank and select have been studied far and wide since the end of
the ‘80s [35], with tons of important theoretical and practical results, which we review in Section 1.1.
Currently, they are the building blocks of many compact data structures [44] used for designing
compressed text indexes [20, 33, 45], succinct trees and graphs [42, 56], monotone minimal perfect
hashing [7], sparse hash tables [58], and permutations [6]. Consequently, they have countless
applications in bioinformatics [17, 38], information retrieval [43], and databases [1], just to mention
a few.

In this paper, we show that the problem above has a surprising connection with the geometry of a
set of points in the Cartesian plane suitably derived from the integers in 𝑆 . We then build upon some
classical results in computational geometry to introduce a novel data-aware compressed storage
and indexing scheme for 𝑆 that deploys linear approximations of the distribution of these points to
“learn” a compact encoding of the input data. We call this novel data structure la_vector because
its building blocks are Linear Approximations. We prove theoretical bounds on its time and space
performance in the worst case, in the case of input distributions with finite mean and variance, and
in terms of the 𝑘th order entropy of some of its building blocks. We show that the la_vector can be
used in conjunction with other compression schemes, thus originating new hybrid data structures
which compare favourably with [50]. Finally, we corroborate these theoretical results with a large
set of experiments over a variety of real-world datasets and well-established approaches.
Overall, our theoretical and practical achievements are particularly interesting not only for

novel space-time trade-offs, which add themselves to this highly-productive algorithmic field active
since 1989 [44], but also because, we argue, they introduce a new way of designing compressed
rank/select data structures which deploy computational geometry tools to “learn” the distribution
of the input data [24]. As such, we foresee that this novel design may offer research opportunities
and stimulate new results from which many applications will hopefully benefit.

1.1 Related work
We assume the standard word RAM model of computation with word size 𝑤 = Θ(log𝑢) and
𝑤 = Ω(log𝑛). Existing rank/select dictionaries differ by the way they encode 𝑆 and how they use
redundancy to squeeze the space and still support fast operations.

In the most basic case, 𝑆 is represented via its characteristic bitvector 𝐵𝑆 , namely a bitvector of
length 𝑢 such that 𝐵𝑆 [𝑖] = 1 if 𝑖 ∈ 𝑆 , and 𝐵𝑆 [𝑖] = 0 otherwise, for 0 ≤ 𝑖 < 𝑢. Then, rank(𝑥) is the
number of 1s in 𝐵𝑆 [0 . . 𝑥], and select(𝑖) is the position of the 𝑖th 1 in 𝐵𝑆 . One can also be interested
in rank0 and select0, which look instead for the 0s in the bitvector, but it holds rank0 (𝑖) = 𝑖−rank(𝑖),
while select0 can be reduced to select via other known reductions [55].

It is long known that 𝑢 + 𝑜 (𝑢) bits are sufficient to have constant-time rank and select [10, 41].
Provided that we keep 𝐵𝑆 in plain form (i.e. read-only) and look for constant-time operations, the
best that we can aim for the redundancy term 𝑜 (𝑢) is Θ(𝑢 log log𝑢/log𝑢) bits [29]. Later, optimal
trade-offs were also given in terms of the density of 1s in 𝐵𝑆 [31] or for the cell-probe model [54, 64].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:3

Practical implementations of rank/select on plain bitvectors have also been extensively studied
and evaluated experimentally [27, 28, 32, 46, 48, 60].

If 𝑆 is sparse, i.e. 𝐵𝑆 contains few 1s, then it may be convenient to switch to compressed represen-
tations. The information-theoretic minimum space to store 𝑆 is B = ⌈log (𝑢𝑛)⌉, which may be much
smaller than𝑢. The value B is related to the (empirical) zero-order entropy of 𝐵𝑆 ,𝐻0 (𝐵𝑆), defined as
𝑢𝐻0 (𝐵𝑆) = 𝑛 log 𝑢

𝑛 + (𝑢−𝑛) log 𝑢
𝑢−𝑛 . In fact, B = 𝑢𝐻0 (𝐵𝑆) −𝑂 (log𝑢). Here, the best upper bound on

the redundancy was attained in [52], whose solution takesB+𝑢/(log𝑢𝑡)𝑡 +𝑂 (𝑢3/4 log𝑢) bits and sup-
ports both rank and select in𝑂 (𝑡) time, that is, constant-time operations in B+𝑂 (𝑢/poly log𝑢) bits.
This essentially matches the lower bounds provided in [54]. Awidely known solution for a sparse 𝑆 is
the RRR encoding [56], which supports constant-time rank and select inB+𝑂 (𝑢 log log𝑢/log𝑢) bits
of space. We will experimentally compare our proposal with its practical implementations described
in [11, 28]. There are also representations bounded by the 𝑘th order entropy of 𝐵𝑆 , defined as
𝑢𝐻𝑘 (𝐵𝑆) =

∑
𝑥 ∈{0,1}𝑘 |𝐵𝑥 |𝐻0 (𝐵𝑥) where 𝐵𝑥 is the bitvector concatenating the bits immediately fol-

lowing an occurrence of 𝑥 in 𝐵𝑆 . For example, the solution of [57] achieves constant-time operations
in 𝑢𝐻𝑘 (𝐵𝑆) +𝑂 (𝑢 (log log𝑢 + 𝑘 + 1)/log𝑢) bits.

In general, to further reduce the space, one has to give up the constant time for both operations.
An example is given by the Elias-Fano representation [14, 15], which supports select in 𝑂 (1) time
and rank in 𝑂 (log 𝑢

𝑛) time while taking 𝑛 log 𝑢
𝑛 + 2𝑛 + 𝑜 (𝑛) bits of space. Its implementations and

refinements proved to be very effective in a variety of real-world contexts [48, 50, 51, 60, 61]. We
will compare our la_vector against the best implementations to date [28, 50].

Another compressed representation for 𝑆 is based on gap encoding. In this case, instead of B or
the zero-order entropy, it is common to use more data-aware measures [4, 26, 34, 39, 57]. Consider
the gaps 𝑔𝑖 between consecutive integers in 𝑆 taken in sorted order, i.e. 𝑔𝑖 = select(𝑖) − select(𝑖 − 1),
and suppose we could store each 𝑔𝑖 in ⌈log(𝑔𝑖 + 1)⌉ bits. Then the gap measure is defined as
gap(𝑆) = ∑

𝑖 ⌈log(𝑔𝑖 +1)⌉. An example of a data-aware structure whose space occupancy is bounded
in terms of gap is presented in [34], which takes gap(𝑆) (1 + 𝑜 (1)) bits while supporting select
in 𝑂 (log log𝑛) time and rank in time matching the optimal predecessor search bounds [47, 53].
Another example is given in [39] taking gap(𝑆) +𝑂 (𝑛) + 𝑜 (𝑢) bits and supporting constant-time
operations. Important ingredients of these gap-based data-aware structures are self-delimiting
codes such as Elias 𝛾- and 𝛿-codes [62]. To provide a complete comparison with our la_vector,
we will experiment with the practical approaches to gap compression implemented in the sdsl
library [28].
Recent work [4] explored further interesting data-aware measures for bounding the space

occupancy of rank/select dictionaries that take into account runs of consecutive integers in 𝑆 .
They introduced data structures supporting constant-time rank and select in a space bounded
by these new data-aware measures. This proposal is mainly theoretical, and indeed the authors
evaluated only its space occupancy. A more practical approach, described in [3, 5], combines gap
and run-length encoding by fitting as many gaps 𝑔𝑖 as possible within a single 32-bit word. This is
done via a 4-bit header indicating how the remaining 28 bits must be decoded (e.g. one gap of 28
bits, two gaps of 14 bits each, etc.). We will compare our proposal also against this recent approach.

1.2 Our contribution
We introduce a novel lossless compressed storage scheme for an integer dictionary 𝑆 based on the
idea of approximating a set of points in the Cartesian plane via segments so that the storage of 𝑆
can be defined by means of a compressed encoding of these segments and the “errors” they do in
approximating the input integers (Section 2). Proper algorithms and data structures are then added
to this compressed storage scheme to support fast rank and select operations (Section 3).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

Our study shows that our approach is asymptotically efficient in time and space, with worst-case
bounds that relate their performance with the number ℓ of segments approximating 𝑆 and the
(controlled) error Y. In particular, Theorems 2.2 and 2.3 state some interesting space bounds that are
proven to be superior to the ones achievable by well-established Elias-Fano approaches for proper
(and widely satisfied) conditions among 𝑛, ℓ and Y.

We extend these results also to the case of input sequences drawn from a distribution with
finite mean and variance (Section 4). In this case, it turns out that our scheme is competitive
with Elias-Fano approaches for Y = 𝜔 (

√
log𝑛), which is a condition easily satisfied in practical

settings [18].
Another theoretical contribution is the design of an algorithm that computes a provably-good

approximation of the optimal set of segments which minimises the space occupancy of our com-
pression scheme (Section 5).
We also consider hybrid solutions that optimally partition the datasets into chunks and apply

the best encoding to each chunk. Consequently, we show that our approach can be used in conjunc-
tion with other known and effective compression schemes, yielding improved hybrid rank/select
structures (Section 6).

We corroborate these theoretical results with a large set of experiments over datasets originating
from a variety of sources and applications (the Web, DNA sequencing, information retrieval and
natural language processing), and we show in Section 7 that our data-aware approach provides new
interesting space-time trade-offs with respect to several other well-established implementations
of Elias-Fano [27, 50], RRR-vectors [11, 27], random-access vectors of Elias 𝛾/𝛿-coded gaps [28],
and gap/run-length encoded bitvectors [5, 40]. Our select is the fastest, whereas our rank is on the
space-time Pareto frontier.
For the sake of presentation, we summarise in Table 1 the main notation used throughout the

paper. And, as a final remark, we note that a preliminary version of this work appeared in [8].
The present contribution includes several new results: the theoretical and experimental study of
high-order compression of the aforesaid approximation “errors” constituting our encoding of 𝑆
(Section 2.2); an improved data partitioning/compression algorithm (Theorem 5.2) that offers a very
simple proof about the quality of the returned solution and also a practical improvement of 1.22%
in space on average over all the datasets, without impairing the time and space complexity of its
construction; the discussion and experimentation of a new improved hybrid data structure that
combines our la_vector with existing rank/select dictionaries (Sections 6 and 7.5); an extended
discussion of the algorithm-engineering tricks used in our implementations (Section 7.1); a more
comprehensive experimental evaluation of the la_vector that includes other recently proposed
rank/select dictionary implementations (Section 7.4).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:5

Table 1. Summary of main notations used in the paper.

Symbol Definition
𝑆 Input set of integer elements
𝑛 Number of integer elements in 𝑆
𝑢 Size of the integer universe
𝐵𝑆 Characteristic bitvector of 𝑆 of size 𝑢 and 𝑛 1s
𝐶 Array of 𝑛 corrections values of 𝑐 bits each
𝑐 Bits allotted to each correction (0 ≤ 𝑐 ≤ log𝑢)
Y Maximum absolute correction value, equal to max(0, 2𝑐−1 − 1)
ℓ Number of segments (Definition 2.1)
𝑠 𝑗 The 𝑗th segment
𝑟 𝑗 Rank of the first element compressed by the segment 𝑠 𝑗
𝛼 𝑗 Slope of the segment 𝑠 𝑗
𝛽 𝑗 Intercept of the segment 𝑠 𝑗
𝑓𝑗 Linear function implemented by the segment 𝑠 𝑗

2 COMPRESSING VIA LINEAR APPROXIMATIONS
Let us assume that 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a sorted sequence of 𝑛 distinct integers. We begin by
mapping each element 𝑥𝑖 ∈ 𝑆 to a point (𝑖, 𝑥𝑖) in the Cartesian plane, for 𝑖 = 1, 2, . . . , 𝑛 [2]. It is easy
to see that any function 𝑓 that passes through all the points in this plane can be thought of as an
encoding of 𝑆 because we can recover 𝑥𝑖 by querying 𝑓 (𝑖). Clearly, 𝑓 should be fast to be computed
and occupy little space.
Here, we aim at implementing 𝑓 via a sequence of segments. Segments capture certain data

patterns naturally. Any run of consecutive and increasing integers, for example, can be encoded by
one segment with slope 1. Generalising, any run of increasing integers with a constant gap 𝑔 can
be encoded by one segment with slope 𝑔. Slight deviations from these data patterns can still be
captured if we allow a segment to make some “errors” in approximating 𝑥𝑖 at position 𝑖 , provided
that we fix these errors by storing some additional information.
This is the main idea behind our proposal. We reduce the problem of compressing 𝑆 to the

one of “learning” the mapping select : {1, . . . , 𝑛} → 𝑆 , which is in turn reduced to the problem of
approximating the set of points {(𝑖, 𝑥𝑖)}𝑖=1,...,𝑛 via a Piecewise Linear Approximation (PLA), that is
a sequence of segments such that every point (𝑖, 𝑥𝑖) is vertically far from one of these segments
by an error bound Y, to be fixed later. In some sense, the sequence of segments introduces an
“information loss” of Y on the integers in 𝑆 . Among all such sequences of segments (i.e. PLAs), we
further aim for the most succinct one, namely the one with the least amount of segments. This
is a classical computational geometry problem that admits an 𝑂 (𝑛)-time algorithm by O’Rourke
[49]. This algorithm processes each point (𝑖, 𝑥𝑖) left-to-right, hence for 𝑖 = 1, . . . , 𝑛, while shrinking
a convex polygon in the parameter space of slopes-intercepts. Any coordinate (𝛼, 𝛽) inside the
polygon represents a line with slope 𝛼 and intercept 𝛽 that approximates with error Y the current
set of processed points. When the 𝑘th point causes the polygon to be empty, a segment (𝛼, 𝛽) is
chosen inside the previous polygon and returned, and a new polygon is started from (𝑘, 𝑥𝑘).

We represent the 𝑗 th segment output by the algorithm above as the triple 𝑠 𝑗 = (𝑟 𝑗 , 𝛼 𝑗 , 𝛽 𝑗), where
𝛼 𝑗 is the slope, 𝛽 𝑗 is the intercept, and 𝑟 𝑗 is the abscissa of the point that started the segment. If ℓ is
the number of segments forming the PLA, we set 𝑟ℓ+1 = 𝑛 and observe that 𝑟1 = 1. The values 𝑟 𝑗 s
partition the set of positions {1, 2, . . . , 𝑛} into ℓ ranges so that, for any integer 𝑖 between 𝑟 𝑗 and 𝑟 𝑗+1

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

1 2 3 4 5 6 7 8 9 10

3
6
10
15
18
22

40
43
47
53

𝑠1 = (1, 5, 0)

𝑠2 = (7, 6, 37)

𝑖

𝑥 𝑖
=
se
le
ct
(𝑖)

3 1 0 0 -2 -3 3 0 -2 -2
1 2 3 4 5 6 7 8 9 10

𝐶

𝑐 bit

Fig. 1. The la_vector encoding of 𝑆 = {3, 6, 10, 15, 18, 22, 40, 43, 47, 53} for 𝑐 = 3 is given by the two segments
𝑠1, 𝑠2 and the array 𝐶 . A segment 𝑠 𝑗 = (𝑟 𝑗 , 𝛼 𝑗 , 𝛽 𝑗) approximates the value of an item with rank 𝑖 via 𝑓𝑗 (𝑖) =
(𝑖 − 𝑟 𝑗) · 𝛼 𝑗 + 𝛽 𝑗 , and 𝐶 corrects the approximation. For example, 𝑥5 = ⌊𝑓1 (5)⌋ + 𝐶 [5] = 20 − 2 = 18 and
𝑥8 = ⌊𝑓2 (8)⌋ +𝐶 [8] = 43 + 0 = 43.

(non-inclusive), we use the segment 𝑠 𝑗 to approximate the value 𝑥𝑖 as follows:

𝑓𝑗 (𝑖) = (𝑖 − 𝑟 𝑗) · 𝛼 𝑗 + 𝛽 𝑗 .
But 𝑓𝑗 (𝑖) is an inexact approximation of 𝑥𝑖 bounded by Y. Thus, in order to turn it into a lossless
representation, we complement the values returned by 𝑓𝑗 with an array 𝐶 [1 . . 𝑛] of integers whose
modulo is bounded by Y. Precisely, each 𝐶 [𝑖] represents the small “correction value” 𝑥𝑖 − ⌊𝑓𝑗 (𝑖)⌋,
which belongs to the set {−Y,−Y + 1, . . . ,−1, 0, 1, . . . , Y}. If we allocate 𝑐 ≥ 2 bits for each correction
in 𝐶 , then the PLA is allowed to err by at most Y = 2𝑐−1 − 1. We also consider the case 𝑐 = 0,
for which we set Y = 0. We ignore the case 𝑐 = 1, because one bit is not enough to distinguish
corrections in {−1, 0, 1}.

The vector 𝐶 completes our encoding, which we name linear approximation vector (la_vector)
and illustrate in Figure 1. Recovering the original sequence 𝑆 is as simple as scanning the segments
𝑠 𝑗 of the PLA and writing the value ⌊𝑓𝑗 (𝑖)⌋ + 𝐶 [𝑖] = 𝑥𝑖 to the output, for 𝑗 = 1, . . . , ℓ and for
𝑖 = 𝑟 𝑗 , . . . , 𝑟 𝑗+1 − 1. This process, formalised in Algorithm 1, is appealing in practice because the
array 𝐶 contains tightly-packed integers that are accessed sequentially, and the computation of
𝑓𝑗 is fast because its values are loaded into three registers when 𝑠 𝑗 is first accessed. Moreover,
there are no data dependencies among the iterations (as it happens for example when integers are
delta-coded and a prefix sum is needed).

Recovering a single integer 𝑥𝑖 requires first the identification of the segment 𝑠 𝑗 that includes the
position 𝑖 , and then the computation of ⌊𝑓𝑗 (𝑖)⌋ +𝐶 [𝑖]. A binary search over the starting positions 𝑟 𝑗
of the segments in the PLA would be enough and takes𝑂 (log ℓ) time, but we will aim for something
more sophisticated in terms of algorithmic design and engineering to squeeze the most from this
novel approach, as commented in the following sections.

For completeness, we observe that the PGM-index [25] might appear similar to this idea because it
uses PLAs and supports predecessor queries. However, the PGM-index does not compress the input

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:7

Algorithm 1 Decompression
Input: PLA {𝑠1, . . . , 𝑠ℓ }, corrections 𝐶 [1 . . 𝑛]
Output: Uncompressed set 𝑆
1: out← an empty array of size 𝑛
2: for all segments 𝑠 𝑗 = (𝑟 𝑗 , 𝛼 𝑗 , 𝛽 𝑗) in the PLA do

3: for 𝑖 ← 𝑟 𝑗 to 𝑟 𝑗+1 − 1 do
4: out[𝑖] ← ⌊𝑓𝑗 (𝑖)⌋ +𝐶 [𝑖], where 𝑓𝑗 = (𝑖 − 𝑟 𝑗) · 𝛼 𝑗 + 𝛽 𝑗
5: return out

keys but only the index, and it is tailored to the external-memory model, as B-trees. Nonetheless,
the PGM-index could take advantage of the la_vector to compress the data stored in its leaves.

2.1 On compression effectiveness
Two counterpoising factors influence the effectiveness of the compressed space occupancy of the
la_vector.
(1) How the integers in 𝑆 map on the Cartesian plane, and thus how many segments they require

for a lossy Y-approximation. The larger is Y, the smaller is “expected” to be the number ℓ of
these segments.

(2) The value of the parameter 𝑐 ≥ 0, which determines the space occupancy of the array 𝐶 ,
having size 𝑛𝑐 bits. From above, we know that Y = max(0, 2𝑐−1 − 1), so the smaller is 𝑐 ,
the smaller is the space occupancy of 𝐶 , but the larger is “expected” to be the number ℓ of
segments of the PLA built for 𝑆 .

We say “expected” because ℓ depends on the distribution of the points (𝑖, 𝑥𝑖) on the Cartesian
plane. In the best scenario, the points lie on one line, so ℓ = 1 and we can set 𝑐 = 0. The more
these points follow a linear trend, the smaller 𝑐 can be chosen and, in turn, the smaller is the
number ℓ of segments approximating these points with error Y. Although in the worst case it
holds ℓ ≤ min{𝑢/(2Y), 𝑛/2}, because of a simple adaptation of [25, Lemma 2], we will show in
Section 4 that for sequences drawn from a distribution with finite mean and variance there are
tighter bounds on ℓ . This leads us to argue that the combination of the PLA and the array 𝐶 , on
which the storage scheme of the la_vector hinges upon, is an interesting algorithmic tool to
design novel compressed rank/select dictionaries.
At this point, it is useful to formally define the interplay among 𝑆 , 𝑐 and ℓ . We argue in this

paper that the number ℓ of segments of the optimal PLA (namely the one using the smallest ℓ) can
be thought of as a new compressibility measure for the information present in 𝑆 , possibly giving
some insights (such as the degree of approximate linearity of the data) that the classical entropy
measures do not explicitly capture. In the following, we assume 𝑐 ≤ log𝑢 to avoid the case in which
𝑛𝑐 exceeds the 𝑂 (𝑛 log𝑢) bits needed by an explicit representation of 𝑆 .

Definition 2.1. Let 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a sorted sequence of 𝑛 distinct integers drawn from the
universe [𝑢]. Given an integer parameter 𝑐 ∈ {0, . . . , log𝑢}, we define ℓ as the number of segments
which constitute the optimal PLA of maximum error Y = max(0, 2𝑐−1 − 1) computed on the set of
points {(𝑖, 𝑥𝑖) | 𝑖 = 1, . . . , 𝑛}.
We are ready to compute the space taken by the la_vector. As far as the representation of a

segment 𝑠 𝑗 = (𝑟 𝑗 , 𝛼 𝑗 , 𝛽 𝑗) is concerned, we note that: (i) the value 𝑟 𝑗 is an abscissa in the Cartesian
plane, thus it can be represented in log𝑛 bits;1 (ii) the slope 𝛼 𝑗 can be encoded as a rational number
1For ease of exposition, we assume that logarithms hide their ceiling and thus return integers.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

with a numerator of log𝑢 bits and a denominator of log𝑛 bits [49, 63]; (iii) the intercept 𝛽 𝑗 is an
ordinate in the plane, thus it can be represented in log𝑢 bits. Therefore, the overall cost of the PLA
is 2ℓ (log𝑛 + log𝑢) bits. Summing the 𝑛𝑐 bits taken by 𝐶 gives our first result.

Theorem 2.2. Let 𝑆 be a set of 𝑛 integers drawn from the universe [𝑢]. Given integers 𝑐 and ℓ as in
Definition 2.1, a plain implementation of the la_vector takes 𝑛𝑐 + 2ℓ (log𝑛 + log𝑢) bits of space.

We can further improve the space taken by the segments as follows. The 𝑟 𝑗 s form an increasing
sequence of ℓ positive integers bounded by 𝑛. The 𝛽 𝑗 s form an increasing sequence of ℓ positive
integers bounded by 𝑢.2 Using the Elias-Fano representation [44, §4.4], we reduce the space of
the two sequences to ℓ log 𝑛

ℓ + ℓ log 𝑢
ℓ + 4ℓ + 𝑜 (ℓ) = ℓ (log 𝑢𝑛

ℓ2 + 4 + 𝑜 (1)) bits. Then, accessing 𝑟 𝑗 or
𝛽 𝑗 amounts to calling the constant-time select(𝑗) on the corresponding Elias-Fano compressed
sequence. Summing the 𝑛𝑐 bits taken by 𝐶 and the ℓ (log𝑛 + log𝑢) bits taken by the 𝛼 𝑗 s gives our
second result.

Theorem 2.3. Let 𝑆 be a set of 𝑛 integers drawn from the universe [𝑢]. Given integers 𝑐 and ℓ as in
Definition 2.1, there exists a more compressed version of the la_vector that takes 𝑛𝑐 + ℓ (2 log 𝑢𝑛

ℓ +
4 + 𝑜 (1)) bits of space.

Finally, we mention the existence of a lossless compressor for the 𝛼 𝑗 s that can be beneficial when
multiple segments share the same or similar slope [25, Theorem 3].

2.2 Entropy-coding the corrections
In this section, we show how to further reduce the space of the la_vector by entropy-coding the
vector of corrections 𝐶 .

Regard 𝐶 as a string of length 𝑛 from an integer alphabet Σ = {−Y,−Y + 1, . . . , Y}, and let 𝑛𝑥
denote the number of occurrences of a symbol 𝑥 in 𝐶 . The zero-order entropy of 𝐶 is defined as

𝐻0 (𝐶) =
∑
𝑥 ∈Σ

𝑛𝑥
𝑛

log 𝑛

𝑛𝑥
.

The value 𝑛𝐻0 (𝐶) is the output size of an ideal compressor that uses − log 𝑛𝑥
𝑛 bits for coding

the symbol 𝑥 unambiguously [13, 36]. In order to further squeeze the output size, one could take
advantage not only of the frequency of symbols but also of their preceding context in 𝐶 . Let 𝐶𝑦 be
the string of length |𝐶𝑦 | that concatenates all the single symbols following each occurrence of a
context 𝑦 inside 𝐶 . The 𝑘th order entropy of 𝐶 is defined as

𝐻𝑘 (𝐶) =
1
𝑛

∑
𝑦∈Σ𝑘
|𝐶𝑦 |𝐻0 (𝐶𝑦).

A well-known data structure achieving zero-order entropy compression is the wavelet tree [33]
with the bitvectors stored in its nodes compressed using RRR [56]. Considering the la_vector of
Theorem 2.3 but compressing 𝐶 via this approach (see also [45, Theorem 8]), we obtain:

Theorem 2.4. Let 𝑆 be a set of 𝑛 integers drawn from the universe [𝑢]. Given integers 𝑐 and ℓ as in
Definition 2.1, there exists a zero-order entropy-compressed version of the la_vector for 𝑆 that takes
𝑛𝐻0 (𝐶) + 𝑜 (𝑛𝑐) + ℓ (2 log 𝑢𝑛

ℓ + 4 + 𝑜 (1)) bits of space, and𝑂 (𝑐) time to access a position in𝐶 , where𝐶
is the vector of corrections.

2This is because 𝛽 𝑗 is the ordinate where 𝑠 𝑗 starts, i.e. 𝛽 𝑗 = 𝑓𝑗 (𝑟 𝑗) (see Figure 1 and the definition of 𝑓𝑗). In the text, we
referred to 𝛽 𝑗 as the “intercept”, but this is improper because 𝛽 𝑗 is not the ordinate of the intersection between 𝑓𝑗 and the
𝑦-axis.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:9

𝐶 wt_huff(𝐶) csa_wt(𝐶)

1
2
3
4
5
6
7

Bi
ts
pe
rc

or
re
ct
io
n

DNA (30.0%)

𝐶 wt_huff(𝐶) csa_wt(𝐶)

5gram (9.8%)

𝐶 wt_huff(𝐶) csa_wt(𝐶)

URL (5.6%)

𝐶 wt_huff(𝐶) csa_wt(𝐶)

Gov2 (76.6%)

1

Fig. 2. The space needed by the plain corrections 𝐶 , zero-order entropy-coded corrections wt_huff(𝐶), and
the high-order entropy-coded corrections csa_wt(𝐶) in an la_vector with 𝑐 = 7. Next to each dataset name,
we show the density value 𝑛/𝑢 as a percentage.

A well-performing high-order entropy-compressed data structure over strings drawn from an
integer alphabet is the alphabet-friendly FM-index [21, 22]. Using the alphabet-friendly FM-index
to store 𝐶 , we obtain:

Theorem 2.5. Let 𝑆 be a set of 𝑛 integers drawn from the universe [𝑢]. Given integers 𝑐 and ℓ as in
Definition 2.1, there exists a 𝑘th order entropy-compressed version of the la_vector for 𝑆 that takes
𝑛𝐻𝑘 (𝐶) + 𝑜 (𝑛𝑐) + ℓ (2 log 𝑢𝑛

ℓ + 4 + 𝑜 (1)) bits of space, and 𝑂 (𝑐 (log1+𝜏 𝑛)/log log𝑛) time to access a
position in 𝐶 , where 𝐶 is the vector of corrections, and 𝜏 > 0 is an arbitrary constant.

To get a practical sense of the real compression achieved by the above two entropy-compressed
versions of the la_vector, we compare experimentally the space taken by the uncompressed
corrections (as adopted in the plain la_vector) with the space taken by (i) a Huffman-shaped
wavelet tree with RRR-compressed bitvectors on 𝐶 (implementing the solution in Theorem 2.4),
and (ii) a compressed suffix array based on a Huffman-shaped wavelet tree with RRR-compressed
bitvectors on the Burrows-Wheeler Transform of 𝐶 (implementing the solution in Theorem 2.5).
We denote the space taken by these two choices by wt_huff(𝐶) and csa_wt(𝐶), respectively, given
the name of the corresponding classes in the sdsl library [28]. For csa_wt(𝐶), we do not take into
account the space taken by the sampled suffix array because we do not need to support the locate
query, which returns the list of positions in 𝐶 where a given pattern string occurs. Rather, to get
individual corrections from 𝐶 , we need the sampled inverse suffix array, which indeed we store
and account for in the space occupancy of csa_wt(𝐶).
Figure 2 shows the results with a value 𝑐 = 7 on four real-world datasets, described in detail in

Section 7. For the DNA dataset, there is no significant difference between the plain corrections and
the zero-order entropy-coder wt_huff(𝐶). Instead, the high-order entropy-coder csa_wt(𝐶) is 33%
smaller. For the other three datasets (5gram, URL, and Gov2), both wt_huff(𝐶) and csa_wt(𝐶)
are up to 56% and 72% smaller than the plain corrections, respectively. This shows that there is
some statistical redundancy within the array of corrections 𝐶 that the la_vector could deploy to
squeeze its space occupancy further.
Another important issue to investigate concerns the impact on the compression of 𝐶 that is

induced by changing the slopes of the segments in the optimal PLA computed for la_vector.
Intuitively, as depicted in Figure 3, different slope-intercept pairs satisfying the same Y-bound
generate different vectors𝐶 with different entropies. As a consequence, instead of picking a random
slope-intercept pair within the ones that are Y-approximation, one can choose the slope-intercept
pair minimising the entropy of 𝐶 .

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

1 2 3 4 5 6

3

6

10

15

18

22

�mmin = [−3,−2,−1, 1, 2, 3]
�mmid = [0,−1, 0, 0, 0, 0]
�mmax = [3, 1, 0, 0,−2,−3]

8

G 8
=
se
le
ct
(8)

Fig. 3. Three possible slopes, mmin, mmid and mmax, for a segment encoding the set 𝑆 = {3, 6, 10, 15, 18, 22}
with 𝑐 = 3. Each slope generates a different vector𝐶 with a different entropy:𝐻0 (𝐶mmin) = 2.58,𝐻0 (𝐶mmid) =
0.65, and 𝐻0 (𝐶mmax) = 2.25.

� wt_huff(�) csa_wt(�)

1
2
3
4
5
6
7

Bi
ts
pe
rc

or
re
ct
io
n

DNA (30.0%)

� wt_huff(�) csa_wt(�)

5GRAM (9.8%)

� wt_huff(�) csa_wt(�)

URL (5.6%)

� wt_huff(�) csa_wt(�)

GOV2 (76.6%)

Slope mmax
Slope mmid
Slope best

Fig. 4. A different choice of the slope of the segments in an la_vector may yield a reduced space occupancy
of the entropy-coded correction vector𝐶 . Here we show three choices:mmax,mmid and best (see Section 2.2).

For the experiment in Figure 2, we adopted the strategy that always chooses the maximum slope
among the Y-approximate segments for 𝑆 . In Figure 4, we compare this strategy, which we call
mmax, with two other strategies: (i) mmid, which chooses the average slope between the smallest
and the largest feasible slopes, and (ii) best, a heuristic that selects nine slopes at regular intervals
between the smallest and the largest feasible slopes and picks the one minimising 𝐻0 (𝐶). For the
DNA and 5gram datasets, there is no noticeable improvement in changing the slope of the segments
of the la_vector. Instead, for URL and Gov2, changing the slope of each segment from mmax to
mmid or best reduces 𝐻0 (𝐶). Of course, since the choice best targets only the zero-order entropy of
the corrections, the plots show little or no reduction of 𝐻𝑘 (𝐶).
To sum up, we can further reduce the space occupancy of the la_vector by entropy-coding

its correction vector 𝐶 . This reduction is particularly interesting in applications in which the
la_vector is used as an archival method, that is, when efficient random access and queries are
not required. In the following, we concentrate on how to support efficient select and rank queries
over 𝑆 , so we explore the variant of the la_vector in which 𝐶 is kept uncompressed.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:11

3 SUPPORTING SELECT AND RANK
To answer select(𝑖) on the la_vector (either on the plain implementation of Theorem 2.2 or
the compressed implementation of Theorem 2.3), we build a predecessor structure D on the set
𝑅 = {𝑟 𝑗 | 1 ≤ 𝑗 ≤ ℓ} and proceed in three steps. First, we useD to retrieve the segment 𝑠 𝑗 in which
𝑖 falls into via 𝑗 = pred(𝑖). Second, we compute 𝑓𝑗 (𝑖), i.e. the approximate value of 𝑥𝑖 given by the
segment 𝑠 𝑗 . Third, we read 𝐶 [𝑖] and return the value ⌊𝑓𝑗 (𝑖)⌋ +𝐶 [𝑖] as the answer to select(𝑖). The
last two steps take 𝑂 (1) time. Treating D as a black box yields the following result.

Lemma 3.1. The la_vector supports select queries in 𝑡 +𝑂 (1) time and 𝑏 bits of additional space,
where 𝑡 is the query time and 𝑏 is the occupied space of a predecessor structure D constructed on a set
of ℓ integers over the universe [𝑛].
If D is represented as the characteristic bitvector of the set 𝑅 augmented with a data structure

supporting constant-time predecessor queries (or rank queries, as termed in the case of bitvec-
tors [44]), then we achieve constant-time select by using only 𝑛 + 𝑜 (𝑛) additional bits, i.e. about
one bit per integer of 𝑆 more than what Theorem 2.2 requires. Note that this bitvector encodes 𝑅,
so that the ℓ log𝑛 bits required in Theorem 2.2 for the representation of the 𝑟 𝑗 s can be dropped.
Corollary 3.2. Let 𝑆 be a set of 𝑛 integers drawn from the universe [𝑢]. Given integers 𝑐 and

ℓ as in Definition 2.1, there exists a compressed representation of the la_vector for 𝑆 that takes
𝑛(𝑐 + 1 + 𝑜 (1)) + ℓ (2 log𝑢 + log𝑛) bits of space while supporting select in 𝑂 (1) time.

Let us compare the space occupancy achieved by the compressed la_vector of Corollary 3.2
to the one of Elias-Fano, namely 𝑛(log 𝑢

𝑛 + 2) + 𝑜 (𝑛) bits [44, §4.4], as both solutions support
constant-time select. The inequality turns out to be

ℓ ≤ 𝑛 (log 1
𝑑 + 𝑜 (1))

2 log 𝑛
𝑑 + log𝑛

= 𝑂

(
𝑛

log𝑛

)
,

where 𝑑 = 𝑛/𝑢 denotes the density of 1s in 𝐵𝑆 .
To solve rank(𝑥), it would be sufficient to perform a binary search on the interval [1, 𝑛] to find

the largest 𝑖 such that select(𝑖) ≤ 𝑥 . This naïve implementation takes 𝑂 (𝑡 log𝑛) time, because of
the implementation of select in 𝑂 (𝑡) time by Lemma 3.1.
We can easily improve this solution to 𝑂 (log ℓ + log𝑛) time as follows. First, we binary search

on the set of ℓ segments to find the segment 𝑠 𝑗 that contains 𝑥 or its predecessor. Formally, we
binary search on the interval [1, ℓ] to find the largest 𝑗 such that select(𝑟 𝑗) = ⌊𝑓𝑗 (𝑟 𝑗)⌋ +𝐶 [𝑟 𝑗] ≤ 𝑥 .
Second, we binary search on the 𝑟 𝑗+1 − 𝑟 𝑗 ≤ 𝑛 integers compressed by segment 𝑠 𝑗 to find the largest
𝑖 such that ⌊𝑓𝑗 (𝑖)⌋ +𝐶 [𝑖] ≤ 𝑥 . Finally, we return 𝑖 as the answer to rank(𝑥).

Surprisingly, we can further speed up rank queries without adding any redundancy on top
of the encoding of Theorem 2.2. The key idea is to narrow down the second binary search to a
subset of the elements covered by 𝑠 𝑗 (i.e. a subset of the ones in positions [𝑟 𝑗 , 𝑟 𝑗+1 − 1]), which
is determined by exploiting the fact that 𝑠 𝑗 approximates all these elements by up to an additive
term Y. Technically, we know that |𝑓𝑗 (𝑖) − 𝑥𝑖 | ≤ Y, and we aim to find 𝑖 such that 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1.
Hence, we can narrow the range to those 𝑖 ∈ [𝑟 𝑗 , 𝑟 𝑗+1 − 1] such that 𝑓𝑗 (𝑖) − Y ≤ 𝑥 < 𝑓𝑗 (𝑖 + 1) + Y. By
expanding 𝑓𝑗 (𝑖) = (𝑖 − 𝑟 𝑗) · 𝛼 𝑗 + 𝛽 𝑗 and noting that 𝑓 is linear and increasing, we get all candidate 𝑖
as the ones satisfying

(𝑖 − 𝑟 𝑗) · 𝛼 𝑗 + 𝛽 𝑗 − Y ≤ 𝑥 < (𝑖 + 1 − 𝑟 𝑗) · 𝛼 𝑗 + 𝛽 𝑗 + Y.
By solving for 𝑖 , we get

𝑥 − 𝛽 𝑗
𝛼 𝑗

+ 𝑟 𝑗 −
(
Y

𝛼 𝑗
+ 1

)
< 𝑖 ≤ 𝑥 − 𝛽 𝑗

𝛼 𝑗
+ 𝑟 𝑗 + Y

𝛼 𝑗
.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

Algorithm 2 Rank implementation by Lemma 3.3
Input: Value 𝑥 , PLA {𝑠1, 𝑠2, . . . , 𝑠ℓ }, corrections 𝐶 [1 . . 𝑛]
Output: Returns rank(𝑥)
1: Find max 𝑗 ∈ [1, ℓ] such that ⌊𝑓𝑗 (𝑟 𝑗)⌋ +𝐶 [𝑟 𝑗] ≤ 𝑥 by binary search
2: pos← ⌊(𝑥 − 𝛽 𝑗)/𝛼 𝑗 ⌋ + 𝑟 𝑗
3: err ← ⌈Y/𝛼 𝑗 ⌉, where Y = max(0, 2𝑐−1 − 1)
4: lo← max{pos − err, 𝑟 𝑗 }
5: hi← min{pos + err, 𝑟 𝑗+1}
6: Find max 𝑖 ∈ [lo, hi] such that ⌊𝑓𝑗 (𝑖)⌋ +𝐶 [𝑖] ≤ 𝑥 by binary search
7: return 𝑖

Since 𝑖 is an integer, we can round the left and the right side of the last inequality, and then we set
pos = ⌊(𝑥 − 𝛽 𝑗)/𝛼 𝑗 ⌋ + 𝑟 𝑗 and err = ⌈Y/𝛼 𝑗 ⌉, so that the searched position 𝑖 falls in [pos−err, pos+err].

The pseudocode of Algorithm 2 exploits these ideas to perform a binary search on the first integers
compressed by the segments (Line 1), to compute the approximate rank and the corresponding
approximation error (Lines 2–3), and finally to binary search on the restricted range specified above
(Lines 4–6). As a final note, we observe that 𝛼 𝑗 ≥ 1 for every 𝑗 , because the elements in 𝑆 are
increasing, and thus the segments have a slope of at least 1. Consequently, Y/𝛼 𝑗 ≤ Y and the range
on which we perform the second binary search has size 2Y < 2𝑐 , thus this second binary search
takes 𝑂 (log Y

𝛼 𝑗
) = 𝑂 (𝑐) time.

Lemma 3.3. The la_vector supports rank queries in 𝑂 (log ℓ + 𝑐) time and no additional space.

Note that Lemma 3.3 applies to: (i) the plain la_vector representation provided in Theorem 2.2
(ii) the compressed la_vector representation provided in Theorem 2.3 (the one that compresses
𝛽 𝑗 s and 𝑟 𝑗 s), (iii) the representation provided in Lemma 3.1 (the one supporting select in parametric
time 𝑡), and (iv) the representation provided in Corollary 3.2 (the one supporting select in constant
time).

We can improve the bound of Lemma 3.3 by replacing the binary search at Line 1 of Algorithm 2
with the following predecessor data structure.

Lemma 3.4 ([53]). Given a set 𝑄 of 𝑞 integers over a universe of size 𝑢, let us define 𝑎 = log 𝑠 log𝑢
𝑞 ,

where 𝑠 log𝑢 is the space usage in bits chosen at building time. Then, the optimal predecessor search
time is

PT(𝑢, 𝑞, 𝑎) = Θ(min{ log𝑞/log log𝑢,
log log(𝑢/𝑞)

𝑎 ,

log log𝑢
𝑎

/
log(𝑎

log𝑞 · log
log𝑢
𝑎),

log log𝑢
𝑎

/
log(log log𝑢

𝑎

/
log log𝑞

𝑎)}).
Let 𝑇 = {select(𝑟 𝑗) | 1 ≤ 𝑗 ≤ ℓ} be the subset of 𝑆 containing the first integer covered by each

segment. We sample one element of 𝑇 out of Θ(2𝑐) and insert the samples into the predecessor
data structure of Lemma 3.4 so that 𝑠 = 𝑞 = ℓ/2𝑐 and thus 𝑎 = log log𝑢. Then, we replace Line 1 of
Algorithm 2 with a predecessor search followed by an 𝑂 (𝑐)-time binary search in-between two
samples.

Corollary 3.5. The la_vector supports rank queries in PT(𝑢, ℓ/2𝑐 , log log𝑢) + 𝑂 (𝑐) time and
𝑂 ((ℓ/2𝑐) log𝑢) bits of additional space.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:13

We can restrict our attention to the first two branches of the min-formula describing the
PT term in Lemma 3.4, as the latter two are instead relevant for universe sizes that are super-
polynomial in 𝑞, i.e. log𝑢 = 𝜔 (log𝑞). The time complexity of rank in Corollary 3.5 then becomes
𝑂 (min{log𝑤 ℓ

2𝑐 , log log
𝑢
ℓ } + 𝑐), where𝑤 = Ω(log𝑢) is the word size of the machine.

4 SPECIAL SEQUENCES
For input sequences drawn from a distribution with finite mean and variance there exist bounds on
the number of segments ℓ , as stated in the following theorem adapted from [19].
Theorem 4.1 ([19]). Let 𝑆 be a set of 𝑛 integers drawn from the universe [𝑢]. Suppose that the

gaps between consecutive integers in 𝑆 are a realisation of a random process consisting of positive,
independent and identically distributed random variables with mean ` and variance 𝜎2. Given the
integers Y and ℓ as in Definition 2.1, if Y is sufficiently larger than 𝜎 , then ℓ = 𝑛𝜎2/Y2 with high
probability.

Plugging this result into the constant-time select of Corollary 3.2 and the rank implementation
of Lemma 3.3, we obtain the following result.
Theorem 4.2. Under the assumptions of Theorem 4.1, there exists a compressed version of the

la_vector for 𝑆 that supports select in 𝑂 (1) time and rank in 𝑂 (log ℓ + 𝑐) time within 𝑛[𝑐 + 1 +
(2 log𝑢 + log𝑛) 𝜎2

Y2 + 𝑜 (1)] bits of space with high probability.

We stress the fact that the data structure of Theorem 4.2 is deterministic. In fact, the randomness is
over the gaps between consecutive integers of the input data, and the result holds for any probability
distribution as long as the mean and variance are finite. Moreover, according to the experiments
in [19], the hypotheses of Theorem 4.1 are very realistic in several applicative scenarios.
Having said that, we observe that the hypothesis “Y is sufficiently larger than 𝜎” implies that

the ratio 𝜎/Y is much smaller than 1. Hence, it is reasonable to assume that the space bound in
Theorem 4.2 is dominated by the term 𝑛(𝑐 + 1) which is independent of the universe size while still
ensuring constant time select and fast rank operations. If we compare the factor 𝑐 + 1 present in
the space bound of the la_vector with the factor log 𝑢

𝑛 present in the space bound of Elias-Fano,
we notice that the latter gets larger as the data is sparse (𝑛 ≪ 𝑢). On the other hand, the time
complexity of select is constant in both cases, whereas our rank is faster whenever log(𝑛𝜎2) is
asymptotically smaller than log 𝑢

𝑛 , which is indeed for 𝑢 = 𝜔 (𝑛2𝜎2).3
In general terms, some results of the previous sections, such as Corollary 3.2 and Lemma 3.3,

showed that our la_vector is better than Elias-Fano whenever ℓ = 𝑂 (𝑛/log𝑛). Since Theorem 4.1
proves that ℓ = Θ(𝑛/Y2) for a large class of input sequences, we can derive that for such sequences
our solution is better than Elias-Fano if Y = 𝜔 (

√
log𝑛).

5 ON OPTIMAL DATA PARTITIONING TO IMPROVE SPACE
So far, we assumed a fixed number of bits 𝑐 ≥ 0 for each of the𝑛 corrections in the la_vector, which
is equivalent to saying that the ℓ segments in the PLA guarantee the same error Y = max(0, 2𝑐−1−1)
over all the integers in the input set 𝑆 . However, the input data may exhibit a variety of regularities
that allow to compress it further if we use a different 𝑐 for different partitions of 𝑆 . The idea of
partitioning data to improve its compression has been studied in the past [9, 23, 50, 59, 62], and it
will be further developed in this section with regard to our piecewise linear approximations.

We reduce the problem of minimising the space of our rank/select dictionary to a single-source
shortest path problem over a properly defined weighted Directed Acyclic Graph (DAG) G defined
3Here we are considering the rank implementation of Lemma 3.3, taking𝑂 (log ℓ +𝑐) = 𝑂 (log(𝑛𝜎2)) time, but an improved
analysis can be obtained by deploying the rank implementation of Corollary 3.5.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

as follows. The graph has 𝑛 vertices, one for each element in 𝑆 , plus one sink vertex denoting
the end of the sequence. An edge (𝑖, 𝑗) of weight 𝑤 (𝑖, 𝑗, 𝑐) indicates that there exists a segment
compressing the integers 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥 𝑗−1 of 𝑆 by using𝑤 (𝑖, 𝑗, 𝑐) = (𝑗 − 𝑖) 𝑐 +^ bits of space, where
𝑐 is the bit-size of the corrections, and ^ is the space taken by the segment representation in bits (e.g.
using the plain encoding of Theorem 2.2 or the compressed encoding of Theorem 2.3). We consider
all the possible values of 𝑐 except 𝑐 = 1, because one bit is not enough to distinguish corrections
in {−1, 0, 1}. Namely, we consider 𝑐 ∈ {0, 2, 3, . . . , 𝑐max}, where 𝑐max = 𝑂 (log𝑢) is defined as the
correction size that produces one single segment on 𝑆 . Since each vertex is the source of at most 𝑐max
edges, one for each possible value of 𝑐 , the total number of edges in G is 𝑂 (𝑛 𝑐max) = 𝑂 (𝑛 log𝑢). It
is not difficult to prove the following:

Fact 5.1. The shortest path from vertex 1 to vertex 𝑛 + 1 in the weighted DAG G defined above
corresponds to the PLA for 𝑆 whose cost is the minimum among the PLAs that use a different error Y on
different segments.

Fact 5.1 provides a solution to the rank/select dictionary problem which minimises the space
occupancy of the approaches stated in Theorems 2.2 and 2.3.

Since G is a DAG, the shortest path can be computed in𝑂 (𝑛 log𝑢) time by taking the vertices in
topological order and by relaxing their outgoing edges [12, §24.2]. However, one cannot approach the
construction of G in a brute-force manner because this would take𝑂 (𝑛2 log𝑢) time and𝑂 (𝑛 log𝑢)
space, as each of the 𝑂 (𝑛 log𝑢) edges requires computing a segment in 𝑂 (𝑗 − 𝑖) = 𝑂 (𝑛) time with
the algorithm of O’Rourke [49].
To avoid this prohibitive cost, we propose an algorithm that computes a solution on the fly by

working on a properly defined graph G′ derived from G, taking 𝑂 (𝑛 log𝑢) time and 𝑂 (𝑛) space.
This reduction in both time and space complexity is crucial to make the approach feasible in practice.
Moreover, we will see that the obtained solution is not “too far” from the one given by the shortest
path in G.

Consider an edge (𝑖, 𝑗) of weight𝑤 (𝑖, 𝑗, 𝑐) in G, which corresponds to a segment compressing the
integers 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥 𝑗−1 of 𝑆 by using𝑤 (𝑖, 𝑗, 𝑐) bits of space. Clearly, the same segment compresses
any subsequence 𝑥𝑎, 𝑥𝑎+1 . . . , 𝑥𝑏−1 of 𝑥𝑖 , . . . , 𝑥 𝑗−1 still using 𝑐 bits per correction. Therefore, the
edge (𝑖, 𝑗) “induces” sub-edges of the kind (𝑎, 𝑏), where 𝑖 ≤ 𝑎 < 𝑏 ≤ 𝑗 , of weight 𝑤 (𝑎, 𝑏, 𝑐). We
observe that the edge (𝑎, 𝑏) may not be an edge of G because a segment computed from position 𝑎
with correction size 𝑐 could end past 𝑏, thus including more integers on its right. Nonetheless this
property is crucial to define our graph G′.

The vertices of G′ are the same as the ones of G. For the edges of G′, we start from the subset of
edges of G that correspond to the segments in the PLAs built for the input set 𝑆 for all the values
of 𝑐 = 0, 2, 3, . . . , 𝑐max. We call these, the full edges of G′. Then, for each full edge (𝑖, 𝑗), we generate
the prefix edge (𝑖, 𝑖 + 𝑘) and the suffix edge (𝑖 + 𝑘, 𝑗), for all 𝑘 = 1, . . . , 𝑗 − 𝑖 . This means that we
are “covering” every full edge with all of its possible “splits” in two shorter edges having the same
correction 𝑐 as (𝑖, 𝑗). The total size of G′ is still 𝑂 (𝑛 log𝑢).
We are now ready to show that the graph G′ has a path whose weight is just an additive term

far from the weight of the shortest path in G. (Notice that this contrasts with the approaches that
obtain a multiplicative approximation factor [23, 50].)

Lemma 5.1. There exists a path in G′ from vertex 1 to vertex 𝑛 + 1 whose weight is at most ^ℓ bits
larger (in an additive sense) than the weight of the shortest path in G, where ^ is the space taken by a
segment in bits, and ℓ is the number of edges in the shortest path of G.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:15

Proof. We show that a generic edge (𝑖, 𝑗) of weight𝑤 (𝑖, 𝑗, 𝑐) = (𝑗−𝑖)𝑐+^ inG can be decomposed
into at most two edges of G′ whose total weight is at most𝑤 (𝑖, 𝑗, 𝑐) + ^. The statement will then
follow by recalling that ℓ is the number of edges in the shortest path of G.
Consider the PLA for 𝑆 with the same correction size 𝑐 as (𝑖, 𝑗). This PLA has surely one

segment that either starts from 𝑖 or overlaps 𝑖 . In the former case we are done because the segment
corresponds to the edge (𝑖, 𝑗), which appears in G′ as a full edge. In the latter case, the segment
corresponds to a full edge (𝑥,𝑦) such that 𝑥 < 𝑖 < 𝑦 < 𝑗 , and it is followed by a segment that
corresponds to a full edge (𝑦, 𝑧) such that 𝑧 > 𝑗 , as shown in the following picture. In fact, 𝑦 cannot
occur after 𝑗 otherwise the segment corresponding to the edge (𝑖, 𝑗) would be longer, because the
length of a segment in a PLA is maximised.

𝑖 𝑗
𝑤 (𝑖, 𝑗, 𝑐)

𝑥 𝑦 𝑧

𝑤 (𝑥,𝑦, 𝑐) 𝑤 (𝑦, 𝑧, 𝑐)

Given this situation, we decompose the edge (𝑖, 𝑗) of G into: the suffix edge (𝑖, 𝑦) of (𝑥,𝑦), and
the prefix edge (𝑦, 𝑗) of (𝑦, 𝑧). Both edges (𝑖, 𝑦) and (𝑦, 𝑗) belong to G′ by construction, they have
correction size 𝑐 , and their total weight is𝑤 (𝑖, 𝑦, 𝑐)+𝑤 (𝑦, 𝑗, 𝑐) = (𝑦−𝑖)𝑐+^+(𝑗−𝑦)𝑐+^ = (𝑗−𝑖)𝑐+2^ .
Since𝑤 (𝑖, 𝑗, 𝑐) = (𝑗−𝑖)𝑐+^ , the previous total weight can be rewritten as𝑤 (𝑖, 𝑗, 𝑐)+^ , as claimed. □

We now describe an algorithm that computes the shortest path in G′ without generating the full
graph G but expanding G′ incrementally so to use 𝑂 (𝑛) working space. The algorithm processes
the vertices of G from left to right, while maintaining the following invariant: for 𝑖 = 1, . . . , 𝑛 + 1,
each processed vertex 𝑖 is covered by one segment for each correction size 𝑐 , and all these segments
form the frontier set 𝐽 .
We begin from vertex 𝑖 = 1 and compute the 𝑐max segments that start from 𝑖 and have any

possible correction size 𝑐 = 0, 2, 3, . . . , 𝑐max . We set 𝐽 as the set of these segments. As in the classic
step of the shortest path algorithm for DAGs, we do a relaxation step on all the (full) edges (𝑖, 𝑗),
where 𝑗 is the set of ending positions of the segments in 𝐽 , that is, we test whether the shortest
path to 𝑗 found so far can be improved by going through 𝑖 (initially, the shortest-path estimates are
set to∞ for each vertex) and update such shortest path accordingly [12, §24.2]. This completes the
first iteration.
At a generic iteration 𝑖 , we first check whether there is a segment in 𝐽 that ends at 𝑖 . If so, we

replace that segment with the longest segment starting at 𝑖 and using the same correction size,
computed as usual using the algorithm of O’Rourke [49]. Afterwards, for each full edge (𝑎, 𝑏) that
corresponds to a segment in 𝐽 , we first relax the set of prefix edges of the kind (𝑎, 𝑖), then we relax
the set of suffix edges of the kind (𝑖, 𝑏). This is depicted in Figure 5.

Theorem 5.2. There exists an algorithm that in 𝑂 (𝑛 log𝑢) time and 𝑂 (𝑛) space outputs a path
from vertex 1 to vertex 𝑛 + 1 whose weight is at most ^ℓ bits larger (in an additive sense) than the
shortest path of G, where ^ is the space taken by a segment in bits, and ℓ is the number of edges in the
shortest path of G.
Proof. It is easy to see that the algorithm finds the shortest path in G′. Indeed, it computes

and relaxes: (i) the full edges of G′ corresponding to the segments in a PLA with correction size 𝑐
when updating the frontier set 𝐽 ; and (ii) all prefix (resp. suffix) edges ending (resp. beginning) at
a vertex 𝑖 when this vertex is processed. Therefore, the algorithm relaxes all the edges of G′ and,
according to Lemma 5.1, it finds a path whose weight is the claimed one.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

8

2 = 5 = + 1

2 = 4 = + 1

2 = 3 = + 1

2 = 2 = + 1

2 = 0 = + 11101

1202

1303

1404

1505

Fig. 5. The algorithm of Theorem 5.2 keeps a frontier with the segments (in orange) crossing the processed
vertex 𝑖 for each value of the correction size 𝑐 (here 𝑐max = 5). For each segment with endpoints 𝑎𝑐 and 𝑏𝑐 ,
which corresponds to a full edge (𝑎𝑐 , 𝑏𝑐) with correction size 𝑐 , the algorithm relaxes the prefix edge (𝑎𝑐 , 𝑖)
and the suffix edge (𝑖, 𝑏𝑐).

As far as the space occupancy is concerned, the algorithm uses𝑂 (𝑛 + |𝐽 |) = 𝑂 (𝑛 + log𝑢) = 𝑂 (𝑛)
space at each iteration, since the size of the frontier set is |𝐽 | = 𝑐max = 𝑂 (log𝑢). The running time
is 𝑂 (|𝐽 |) = 𝑂 (log𝑢) per iteration, plus the cost of replacing a segment in 𝐽 when it ends before the
processed vertex, i.e. the cost of computing a full edge. This latter cost is 𝑂 (𝑛) time for any given
value of 𝑐 and over all 𝑛 elements (namely, it is 𝑂 (1) amortised time per processed element [49]),
thus 𝑂 (𝑛 log𝑢) time over all the values of 𝑐 . □

Given Theorem 5.2, the PLA computed by our algorithm can be used to design a rank/select
dictionary which minimises the space occupancy of the solutions based on the approaches of
Theorems 2.2 and 2.3. Section 7 will experiment with this approach.

6 ON HYBRID RANK/SELECT DICTIONARIES
As recalled in Section 1.1, the literature offers a plethora of compressed rank/select dictionaries.
Some take into account the statistical or the combinatorial properties of the input, others exploit
the compressibility of clusters of consecutive integers. The compression scheme introduced in this
paper, on the other hand, exploits the “geometric properties” of the input data by accommodating
their slight deviations from linear trends with the use of small correction values. The choice of
the best compression scheme in terms of space occupancy heavily depends on the characteristics
of the input data, and thus it is reasonable to expect the best gains in space if we design hybrid
solutions that combine several different approaches [4, 50, 59].

In the following, we combine the ideas of Section 5 with the hybrid rank/select dictionary of [50]
and thus design an improved hybrid rank/select dictionary. This uses a two-level scheme in which
the lower level stores 𝑆 , properly partitioned into chunks (as detailed below), and the upper level
stores, for each lower-level chunk 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥 𝑗 , the integer 𝑥𝑖 = select(𝑖), the length 𝑗 − 𝑖 + 1, and
a pointer to the encoding in the lower level. Therefore, the amount of bits stored in the upper level
for each chunk is upper bounded by 𝐹 = log𝑢 + 2 log𝑛.
Following [50], we assign to a generic chunk 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥 𝑗 a cost 𝑤 (𝑖, 𝑗) given by the sum of

𝐹 and a cost that depends on the encoding of the elements in that chunk. If 𝑢 ′ = 𝑥 𝑗 − 𝑥𝑖 is the

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:17

universe size of the chunk, and 𝑛′ = 𝑗 − 𝑖 + 1 is the number of elements in the chunk, then the cost
of that encoding is the minimum of:
• 0 bits, if 𝑢 ′ = 𝑛′ and thus the chunk is a run (R) of consecutive integers in which rank/select
can be computed in constant time from 𝑥𝑖 and 𝑖 .
• 𝑢 ′ + 𝑜 (𝑢 ′) bits, if we use a characteristic bitvector (BV) of size 𝑢 ′ augmented with the infor-
mation to support rank and select in constant time.
• 𝑛′(⌈log 𝑢′

𝑛′ ⌉ + 2) bits, if we use Elias-Fano (EF), which supports select in 𝑂 (1) time and rank
in 𝑂 (log 𝑢′

𝑛′) time.
• 𝑛′𝑐 +𝑤 +𝑐 + log 𝑐max bits, if there exists one single segment approximating all elements of the
chunk with correction size 𝑐 . In this case, select takes 𝑂 (1) time and rank takes 𝑂 (𝑐) time.

Note that the last cost slightly differs from the one in Theorem 2.2. Similarly to Theorem 2.2, we
use 𝑛′𝑐 bits for the vector of corrections. Differently from Theorem 2.2, we use 𝑐 bits to encode the
intercept instead of log𝑛 bits because the intercept value is guaranteed to be at most Y far from the
value 𝑖 (which is already stored in the upper level of the two-level structure), and thus it can be
encoded by shifting 𝑖 by an amount stored in 𝑐 = Θ(log Y) bits. Also, we encode the slope in a word
of𝑤 bits. Finally, since we need to keep the value 𝑐 (which possibly changes for each segment), we
use additional log 𝑐max bits per segment, where 𝑐max = 𝑂 (log𝑢) is defined as in Section 5 as the
minimum correction size that produces one single segment on 𝑆 .

The overall cost in bits of the two-level structure corresponding to a partition 𝑃 of 𝑆 into 𝑘 chunks
with endpoints 1 = 𝑖0, 𝑖1, . . . , 𝑖𝑘 = 𝑛 is given by𝑤 (𝑃) = ∑𝑘−1

ℎ=0𝑤 (𝑖ℎ, 𝑖ℎ+1 − 1). To solve the problem
of finding an optimal partition 𝑃 that minimises𝑤 (𝑃), we slightly alter the algorithm of [23, 50] to
consider also an encoding via segments. The algorithm of [23, 50] finds in 𝑂 (𝑛 log1+𝜖 1

𝜖) time and
𝑂 (𝑛) space a partition whose cost is only 1 + 𝜖 times larger than the optimal one, for any given
𝜖 ∈ (0, 1). This is done via a left-to-right scan of 𝑆 , hence for 𝑖 = 1, . . . , 𝑛, that keeps 𝑂 (log1+𝜖 1

𝜖)
sliding windows that start all from 𝑖 and are such that the 𝑘th window covers a chunk [𝑖, 𝑗] such
that either𝑤 (𝑖, 𝑗) ≤ 𝐹 (1 + 𝜖)𝑘 < 𝑤 (𝑖, 𝑗 + 1) or 𝑗 = 𝑛.
A crucial property used in [50] is that computing 𝑤 (𝑖, 𝑗) for the first three encoders above

(namely, EF, BV, and R) takes constant time. Instead, computing whether there is a segment
approximating the integers in a chunk requires 𝑂 (𝑛′) time. Since we need to compute a segment
for each value of 𝑐 ∈ {0, 2, 3, . . . , 𝑐max}, computing the (1 + 𝜖)-optimal partition 𝑃 minimising𝑤 (𝑃)
takes 𝑂 (𝑐max 𝑛

2 log1+𝜖 1
𝜖) time and 𝑂 (𝑛) space in the presence of segments, where 𝑐max = 𝑂 (log𝑢).

In Section 7.5, we experiment with an approach that uses the algorithm of Section 5 to compute a
partition in𝑂 (𝑐max 𝑛 log1+𝜖 1

𝜖) time and𝑂 (𝑛 + 𝑐max) = 𝑂 (𝑛) space. It operates by keeping a frontier
of 𝑐max segments that overlap the corresponding window and by updating the frontier when the
window moves, as we have seen in Section 5 (see the example in Figure 5).

7 EXPERIMENTS
Our experiments were run on a machine with 40 GB of RAM and an Intel Xeon E5-2407v2 CPU.

7.1 Implementation notes
The implementation of our la_vector is done in C++, and its code is available at https://github.com/
gvinciguerra/la_vector. In the following, we will use the notation la_vector<𝑐>, where 𝑐 is the
correction size, to refer to our plain dictionary described in Sections 2 and 3, and use la_vector_opt
to denote our space-optimised dictionary described in Section 5.
We store the segments triples 𝑠 𝑗 = (𝑟 𝑗 , 𝛼 𝑗 , 𝛽 𝑗) as an array of structures with memory-aligned

fields. This allows for better locality and aligned memory accesses. Since in practice the segments
are few (see Figure 6) and fit the last-level cache, we avoid complex structures on top of the 𝑟 𝑗 s and

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://github.com/gvinciguerra/la_vector
https://github.com/gvinciguerra/la_vector

1:18 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

the select(𝑟 𝑗)s (as suggested by Corollaries 3.2 and 3.5 to asymptotically speed up select and rank,
respectively).
To further speed up rank and select, we introduce two small tables of size 216 each that allow

accessing in one hop a narrower range of segments to binary search on. These two tables use
fixed-size cells of ⌈log ℓ⌉ bits, because they index segments. Specifically, the table 𝑇1 of size 216
partitions the 𝑛 keys into blocks of size 𝑑1 = ⌈𝑛/216⌉, so that 𝑇1 [𝑘] points to the segment covering
the first key of the 𝑘th block. This way, a select(𝑖) query can be answered by binary searching
the segments between positions 𝑇1 [𝑘] and 𝑇1 [𝑘 + 1], where 𝑘 = ⌊𝑖/𝑑1⌋ is the index of the block
containing the 𝑖th key. Similarly, the small table 𝑇2 of size 216 partitions the universe into blocks of
size 𝑑2 = ⌈𝑢/216⌉, so that 𝑇2 [𝑦] points to the segment covering the first position of block 𝑦. This
way, a rank(𝑥) query can be answered by binary searching the segments between positions 𝑇2 [𝑦]
and 𝑇2 [𝑦 + 1], where 𝑦 = ⌊𝑥/𝑑2⌋ is the index of the block containing value 𝑥 .

We introduce two other algorithm engineering tricks. The first one is to copy the first correction
𝐶 [𝑟 𝑗] into the segment 𝑠 𝑗 structure. This improves the spatial locality of Line 1 in Algorithm 2,
because both 𝐶 [𝑟 𝑗] and the values needed to compute 𝑓𝑗 (𝑟 𝑗) are stored nearby. The second trick
is a two-level layout for 𝐶 that reduces the number of cache misses of Line 6 in Algorithm 2.
Specifically, we split 𝐶 into an array 𝐶1 storing all the corrections 𝐶 [𝑖] such that 𝑖 is a multiple
of an integer 𝑑 , and an array 𝐶2 containing the remaining corrections. Note that because of this
split, we must slightly alter select(𝑖) so that it accesses 𝐶1 [⌊𝑖/𝑑⌋] if 𝑖 mod 𝑑 = 0, and 𝐶2 [𝑖 − ⌊𝑖/𝑑⌋]
otherwise. Then, we modify Line 6 to perform two binary searches. The first one touches only the
𝐶 [𝑖]s such that 𝑖 mod 𝑑 = 0. The second one touches the Θ(𝑑) correction values in 𝐶2 in-between
two consecutive positions found by the first binary search. Experimentally, we found that the best
performance is achieved when 𝑑 is roughly four cache lines of correction values (i.e. 𝑑 = ⌈4 · 512/𝑐⌉
in our machine with 512-bit cache lines).

7.2 Baselines
We use the following rank/select dictionaries from the Succinct Data Structures Library (sdsl) [27]:

sd_vector: the Elias-Fano representation for increasing integer sequences with constant-time
select [48].

rrr_vector<𝑡>: a practical implementation of the 𝐻0-compressed bitvector of Raman, Raman
and Rao with 𝑡-bit blocks [11, 56].

enc_vector<𝛾/𝛿, 𝑠>: it encodes the gaps between consecutive integers via either Elias 𝛾- or
𝛿-codes. Random access is implemented by storing, with sample rate 𝑠 , an uncompressed
integer and a bit-pointer to the beginning of the code of the following gap. We implemented
rank via a binary search on the samples, followed by the sequential decoding and prefix sum
of the gaps in-between two samples.

We also use the following rank/select dictionaries from the Data Structures for Inverted Indexes
(ds2i) library [50]:

uniform_partitioned: it divides the input into fixed-sized chunks and encodes each chunk
with Elias-Fano.

opt_partitioned: it divides the input into variable-sized chunks and encodes each chunk
with Elias-Fano. The endpoints are computed by a dynamic programming algorithm that
minimises the overall space.

In both structures above, endpoints and boundary values of the chunks are stored in a separate
Elias-Fano data structure. For a fair comparison, we disallow the use of encoding schemes for

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:19

Table 2. Characteristics of the datasets

Dataset Density 𝑛/𝑢 𝑛 (M) 𝑢 (M) Size in MiB
Gov2 avg +10M (53.0%) 53.04% 13.06 24.62 49.81
Gov2 avg 1M-10M (13.4%) 13.37% 3.29 24.62 12.56
Gov2 avg 100K-1M (1.3%) 1.29% 0.31 24.56 1.20
URL (5.6%) 5.58% 57.97 1039.92 221.16
URL (1.3%) 1.30% 13.55 1039.91 51.72
URL (0.4%) 0.36% 3.73 1039.86 14.23
5gram (9.8%) 9.85% 145.39 1476.73 554.64
5gram (2.0%) 1.98% 29.19 1476.72 111.80
5gram (0.8%) 0.76% 11.21 1476.68 42.79
DNA (30.0%) 30.02% 300.23 999.99 1145.32
DNA (6.0%) 6.00% 60.03 999.99 229.00
DNA (1.2%) 1.20% 12.00 999.99 45.79

chunks different from Elias-Fano, and we defer the experimentation of such hybrid rank/select
dictionaries to Section 7.5.4

To widen our experimental comparison, we also use:
rle_vector<𝑏>: it implements a run-length encoding of the input bitvector by alternating

the lengths of runs of 0s and 1s, coded in VByte (but over nibbles). To support efficient
operations, two separate sd_vectors store, for each 𝑏-byte block, the position and the rank
of the first 1-bit in the block. [40].5

s18_vector<𝑏>: it uses gap and run-length encoding to compress the input bitvector via a
sequence of 32-bit codes. To support efficient operations, it stores rank and select samples
every 𝑏 codes [5].

7.3 Datasets
We test lists of integers originating from different applications. We select these lists so that their
density 𝑛/𝑢 vary significantly, viz. up to three orders of magnitude. The universe size 𝑢 never
exceeds 232 − 1, because the implementations in ds2i only support 32-bit integers. We use the
following datasets, whose characteristics are summarised in Table 2.

Gov2 is an inverted index built on a collection of about 25M .gov sites, in which document
identifiers were assigned according to the lexicographic order of their URLs [50]. In Figures 2,
4 and 6, we use the longest inverted list which has a density of 76.6%. In Figures 7 and 8, we
instead test all solutions over each list separately and average the results over lists of lengths
100K–1M, 1M–10M and >10M. This grouping of lists by length induces an average density
of 1.29%, 13.37% and 53.04%, respectively.

URL is a text file of 1.03 GB containing URLs originating from three sources, namely a human-
curated web directory, global news, and journal articles’ DOIs.6 On this file, we first applied

4We ought to mention that hybrid encoding schemes were not correctly disabled in the conference version [8]. This error
caused Partitioned Elias-Fano to have an advantage of 41% space, 8% select time, and a disadvantage of 2% rank time.
5The implementation of rle_vector is available at https://github.com/vgteam/sdsl-lite.
6Available at https://kaggle.com/shawon10/url-classification-dataset-dmoz, https://doi.org/10.7910/DVN/ILAT5B, and https:
//archive.org/details/doi-urls, respectively.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://github.com/vgteam/sdsl-lite
https://kaggle.com/shawon10/url-classification-dataset-dmoz
https://doi.org/10.7910/DVN/ILAT5B
https://archive.org/details/doi-urls
https://archive.org/details/doi-urls

1:20 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

6 7 8 9 10 11 12 13 14

10−5

10−4

10−3

10−2

Correction size 𝑐

ℓ/
𝑛

Gov2 (76.6%)
URL (5.6%)
5gram (9.8%)
DNA (30.0%)

Fig. 6. The ratio between the number of segments ℓ and the size 𝑛 of the largest datasets at different correction
sizes 𝑐 .

the Burrows-Wheeler Transform (BWT), as implemented by [16], and then we generated
three integer lists by enumerating the positions of the 𝑖th most frequent character in the
resulting BWT. The different list sizes (and densities) were achieved by properly setting 𝑖 ,
and they were 3.7M (0.36%), 13M (1.30%) and 57M (5.58%).

5gram is a text file of 1.4 GB containing 60M different five-word sequences occurring in books
indexed by Google.7 As for URL, we first applied the BWT and then generated three integer
lists of sizes (densities): 11M (0.76%), 29M (1.98%) and 145M (9.85%).

DNA is the first GB of the human reference genome.8 We generated an integer list by enu-
merating the positions of the A nucleobase. Different densities were achieved by randomly
deleting an A-occurrence with a fixed probability. The list sizes (and densities) are 12M
(1.20%), 60M (6.00%) and 300M (30.02%).

As a first experiment, we show in Figure 6 that the number of segments ℓ composing the
optimal PLA of the various input datasets is orders of magnitude smaller than the input size. These
figures make our approach very promising, as argued at the beginning of this paper. The following
experiments will assume 𝑐 ≥ 6 for la_vector<𝑐> because, on these datasets, smaller values of 𝑐
make ℓ too large and thus the space occupied by the segments becomes significantly larger than
the space taken by the correction array 𝐶 .

7.4 Experiments on rank and select
We now experiment with the time and space performance of rank/select dictionaries by running
them on each dataset (of size 𝑛) with a batch of 0.2𝑛 random queries. For clarity and significance
of the plots, we only show the implementations that use less than 16 bits per integer and whose
average query time is not too high with respect to the others.

7.4.1 Performance of select. Figure 7 shows the results for select. We notice that our la_vector<𝑐>
variants consistently provide the best time performance. This comes at the cost of requiring 𝑐 bits

7Available at https://storage.googleapis.com/books/ngrams/books/datasetsv3.html.
8Available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

A Learned Approach to Design Compressed Rank/Select Data Structures 1:21

per integer, plus the cost of storing the segments. For very low densities (plots in the first column)
and low values of 𝑐 , the overhead due to the segments may exceed the cost of storing 𝐶 (see e.g.
5gram and DNA, where the set of la_vector configurations is U-shaped). This unlucky situation
is solved by la_vector_opt, which avoids the tuning of 𝑐 by computing the PLA that minimises
the overall space, possibly adopting different 𝑐 for different segments. Note that la_vector_opt is
always faster than the plain Elias-Fano encoding (i.e. sdsl::sd_vector), except for large densities
in DNA (i.e. 30%), and it is also more compressed on the Gov2, 5gram and URL datasets.
The other Elias-Fano encodings are generally fast as well, with ds2i::uniform_partitioned

and opt_partitioned being more compressed but roughly 50 ns slower than sdsl::sd_vector
due to the use of a two-level structure. In any case, our la_vector_opt and la_vector<𝑐> are not
dominated by these advanced Elias-Fano variants over all the datasets, except for large densities in
DNA.
For what concerns sdsl::enc_vector and sdsl::rrr_vector, they are pretty slow although

offering very good compression ratios. The slow performance of select in the latter is due to its
implementation via a combination of a binary search on a sampled vector of ranks plus a linear
search in-between two samples (see [44, §4.3]).
The same goes for s18_vector, which is very succinct but not fast, in fact, it is only on the

Pareto frontier of the URL dataset.
Finally, we notice that rle_vector is dominated in time and space by some other data structure

on all the datasets except for URL (0.4%).

7.4.2 Performance of rank. Figure 8 shows the results for rank. We observe that sdsl::rrr_vector
and sdsl::sd_vector achieve the best time performance with la_vector following closely, i.e.
within 120 ns or less. However, at low densities (first column of Figure 8), sdsl::rrr_vector has
a very poor space performance, more than 10 bits per integer.
Not surprisingly, sdsl::enc_vector< ·, 𝑠> has often the slowest rank, because it performs a

binary search on a vector of 𝑛/𝑠 samples, followed by the linear decoding and prefix sum of at most
𝑠 gaps coded with 𝛾 or 𝛿 .

s18_vector is very succinct but not fast, in fact, it is only on the Pareto frontier of the URL
dataset, as it occurred for the select query.

rle_vector is dominated in time and space by some other data structure on all the datasets
except for URL (0.4%), as it occurred for the select query.

Note that for Gov2, URL and 5gram our la_vector_opt falls on the Pareto frontier of Elias-Fano
approaches thus offering an interesting space-time trade-off also for the rank query.

7.4.3 Discussion on the space-time performance. Overall, sdsl::rrr_vector provides the fastest
rank but the slowest select. Its space is competitive with other implementations only for moderate
and large densities of 1s.

The Elias-Fano approaches provide fast rank and moderately fast select in competitive space. In
particular, the plain Elias-Fano (sdsl::sd_vector) offers fast operations but in a space competitive
with other structures only on DNA; while the partitioned variants of Elias-Fano implemented in
ds2i offer the best compression but at the cost of slower rank and select. On low densities of the
DNA datasets (i.e. 6.0% and 1.2%) the implementations of ds2i provide the best time and space
performance.

sdsl::enc_vector< ·, 𝑠> provides a smooth space-time trade-off controlled by the 𝑠 parameter,
but it has non-competitive rank and select operations.

s18_vector is very succinct but provides generally slow rank and select operations. It is only
on the Pareto frontier of the URL datasets.

rle_vector is only on the Pareto frontier of URL (0.4%).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

200 400 600
5

10

15

𝛿𝛾

𝛿𝛾
𝛿𝛾 𝛿𝛾Sp

ac
e
(b
its

pe
ri
nt
eg
er
)

Gov2 avg 100K-1M (1.3%)

0 200 400 600 800

5

10

𝛿𝛾

𝛿𝛾
𝛿𝛾 𝛿𝛾

Gov2 avg 1M-10M (13.4%)

200 400 600 800

5

10

𝛿𝛾

𝛿𝛾
𝛿𝛾 𝛿𝛾

Gov2 avg +10M (53.0%)

200 400 600

5

10

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾Sp

ac
e
(b
its

pe
ri
nt
eg
er
)

URL (0.4%)

200 400 600 800
4

6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

URL (1.3%)

200 400 600 800

5

10

𝛿𝛾

𝛿𝛾
𝛿𝛾
𝛿𝛾

URL (5.6%)

200 400 600 800

6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾Sp

ac
e
(b
its

pe
ri
nt
eg
er
)

5gram (0.8%)

200 400 600 800
4

6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

5gram (2.0%)

200 400 600 800 1,000

5

10

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

5gram (9.8%)

200 400 600

10

12

14

16

𝛿

𝛾

𝛿

𝛾

𝛿

𝛾

𝛿

𝛾

Select time (nanoseconds)

Sp
ac
e
(b
its

pe
ri
nt
eg
er
)

DNA (1.2%)

200 400 600 800
6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

Select time (nanoseconds)

DNA (6.0%)

500 1,000

4

6

8

10

12

𝛿𝛾

𝛿𝛾
𝛿𝛾 𝛿𝛾

Select time (nanoseconds)

DNA (30.0%)

sdsl::rrr_vector<15> sdsl::rrr_vector<31> sdsl::rrr_vector<63> sdsl::rrr_vector<127>
sdsl::sd_vector ds2i::uniform_partitioned ds2i::opt_partitioned
la_vector<6> la_vector<7> la_vector<8> la_vector<9>
la_vector<10> la_vector<11> la_vector<12> la_vector_opt

𝛿 sdsl::enc_vector<𝛿, 16> 𝛾 sdsl::enc_vector<𝛾, 16> 𝛿 sdsl::enc_vector<𝛿, 32> 𝛾 sdsl::enc_vector<𝛾, 32>
𝛿 sdsl::enc_vector<𝛿, 64> 𝛾 sdsl::enc_vector<𝛾, 64> 𝛿 sdsl::enc_vector<𝛿, 128> 𝛾 sdsl::enc_vector<𝛾, 128>
s18_vector<4> s18_vector<8> s18_vector<16> s18_vector<32>
sdsl::rle_vector<32> sdsl::rle_vector<64> sdsl::rle_vector<96> sdsl::rle_vector<128>

Fig. 7. Space-time performance of the select query.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:23

200 400 600 800
5

10

15

𝛿𝛾

𝛿𝛾
𝛿𝛾

𝛿𝛾Sp
ac
e
(b
its

pe
ri
nt
eg
er
)

Gov2 avg 100K-1M (1.3%)

200 400 600 800

5

10

𝛿𝛾

𝛿𝛾
𝛿𝛾

𝛿𝛾

Gov2 avg 1M-10M (13.4%)

200 400 600 800

5

10

𝛿𝛾

𝛿𝛾
𝛿𝛾 𝛿𝛾

Gov2 avg +10M (53.0%)

200 400 600 800

5

10

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

Sp
ac
e
(b
its

pe
ri
nt
eg
er
)

URL (0.4%)

200 400 600 800 1,000
4

6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

URL (1.3%)

200 400 600 800 1,000

5

10

𝛿𝛾

𝛿𝛾
𝛿𝛾

𝛿𝛾

URL (5.6%)

200 400 600 800

6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾Sp

ac
e
(b
its

pe
ri
nt
eg
er
)

5gram (0.8%)

200 400 600 800 1,000
4

6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

5gram (2.0%)

500 1,000

5

10

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

5gram (9.8%)

500 1,000

10

12

14

16

𝛿

𝛾

𝛿

𝛾

𝛿

𝛾

𝛿

𝛾

Rank time (nanoseconds)

Sp
ac
e
(b
its

pe
ri
nt
eg
er
)

DNA (1.2%)

500 1,000
6

8

10

12

𝛿𝛾

𝛿𝛾

𝛿𝛾
𝛿𝛾

Rank time (nanoseconds)

DNA (6.0%)

500 1,000

4

6

8

10

12

𝛿𝛾

𝛿𝛾
𝛿𝛾 𝛿𝛾

Rank time (nanoseconds)

DNA (30.0%)

sdsl::rrr_vector<15> sdsl::rrr_vector<31> sdsl::rrr_vector<63> sdsl::rrr_vector<127>
sdsl::sd_vector ds2i::uniform_partitioned ds2i::opt_partitioned
la_vector<6> la_vector<7> la_vector<8> la_vector<9>
la_vector<10> la_vector<11> la_vector<12> la_vector_opt

𝛿 sdsl::enc_vector<𝛿, 16> 𝛾 sdsl::enc_vector<𝛾, 16> 𝛿 sdsl::enc_vector<𝛿, 32> 𝛾 sdsl::enc_vector<𝛾, 32>
𝛿 sdsl::enc_vector<𝛿, 64> 𝛾 sdsl::enc_vector<𝛾, 64> 𝛿 sdsl::enc_vector<𝛿, 128> 𝛾 sdsl::enc_vector<𝛾, 128>
s18_vector<4> s18_vector<8> s18_vector<16> s18_vector<32>
sdsl::rle_vector<32> sdsl::rle_vector<64> sdsl::rle_vector<96> sdsl::rle_vector<128>

Fig. 8. Space-time performance of the rank query.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

Table 3. Number of chunks in the hybrid approach of Section 6 that are better compressed by a segment
(plus corrections).

Dataset # of chunks that
use a segment

% of chunks that
use a segment

% of integers coded
with segments

Gov2 avg +10M (53.0%) 2217 11.21% 12.43%
Gov2 avg 1M-10M (13.4%) 424 4.57% 9.53%
Gov2 avg 100K-1M (1.3%) 44 2.74% 4.91%
URL (5.6%) 30396 15.35% 22.69%
URL (1.3%) 7356 10.02% 9.99%
URL (0.4%) 2093 26.76% 54.97%
5gram (9.8%) 31911 8.44% 14.44%
5gram (2.0%) 5640 5.10% 13.49%
5gram (0.8%) 1640 3.41% 6.88%
DNA (30.0%) 215 0.03% 0.01%
DNA (6.0%) 0 0% 0%
DNA (1.2%) 0 0% 0%

Our la_vector<𝑐> offers the fastest select, competitive rank, and a smooth space-time trade-off
controlled by the 𝑐 parameter, where values of 𝑐 ≥ 6 were found to “balance” the cost of storing
the corrections and the cost of storing the segments. Our space-optimised la_vector_opt in most
cases (i) dominates the space-time performance of la_vector<𝑐>; (ii) offers a select which is faster
than all the other tested approaches; (iii) offers a rank which is on the Pareto frontier of Elias-Fano
approaches.
Finally, for the construction times over the various datasets, we report that la_vector<𝑐> (we

averaged over the values of 𝑐 used in Figures 7 and 8) builds 1.41× faster than sdsl::enc_vector,
2.45× faster than sdsl::rrr_vector, 9.74× faster than s18_vector, and 1.89× slower than
sdsl::sd_vector. For what concerns the space-optimised la_vector_opt, it builds 82.18× slower
than the plain la_vector<𝑐>, and 2.41× slower than the homologous space-optimised Elias-Fano
(i.e. ds2i::opt_partitioned). Future work is needed to improve the construction performance of
la_vector_opt.

7.5 Experiments on hybrid rank/select dictionaries
We evaluate the hybrid structure of Section 6 that combines segments, Elias-Fano (EF), plain
bitvectors (BV), and runs (R) of consecutive integers. We look in particular at how many chunks
and how many integers are encoded via segments, and thus the impact of our “geometric” approach
on the hybrid rank/select dictionary of [50].

From the results in Table 3, we notice that the segments are chosen as encodings of the chunks
in all the datasets except for DNA (6.0%) and DNA (1.2%). The overall amount of chunks that use
segments is below 16% except for URL (0.4%), where the number of chunks that use segments is
very large, namely 26.76%.

As far as the percentage of integers encoded with each compression scheme is concerned, Figure 9
shows that segments are often selected as the best compression scheme for a substantial part of
every dataset. In particular, half of the URL (0.4%) dataset is encoded with segments. Therefore, we
argue that our “geometric” approach can compete with well-established succinct encoding schemes.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

A Learned Approach to Design Compressed Rank/Select Data Structures 1:25

D
N
A
(3
0.0

%)
D
N
A
(6
.0%

)
D
N
A
(1
.2%

)

5g
ra

m
(9
.8%

)
5g

ra
m
(2
.0%

)
5g

ra
m
(0
.8%

)

UR
L
(5
.6%

)
UR

L
(1
.3%

)
UR

L
(0
.4%

)

Go
v2

(5
3.0

%)
Go

v2
(1
3.4

%)
Go

v2
(1
.3%

)

0

20

40

60

80

100

N
um

be
ro

fi
nt
eg
er
s[
%]

Partioned Elias-Fano

D
N
A
(3
0.0

%)
D
N
A
(6
.0%

)
D
N
A
(1
.2%

)

5g
ra

m
(9
.8%

)
5g

ra
m
(2
.0%

)
5g

ra
m
(0
.8%

)

UR
L
(5
.6%

)
UR

L
(1
.3%

)
UR

L
(0
.4%

)

Go
v2

(5
3.0

%)
Go

v2
(1
3.4

%)
Go

v2
(1
.3%

)

Partioned Elias-Fano with segments

Elias-Fano Plain bitvector Run Segment

Fig. 9. Percentage of integers encoded with each compression scheme.

Looking at Figure 9, it is also clear that segments mainly substitute the run encoding (R). This
could seem counter-intuitive since R uses 0 bits of space. But this can be explained by the fact that,
for each chunk, we need to store some metadata (namely the first integer of the chunk, its length,
and a pointer), and thus we can get better compression by reducing the overall number of chunks,
as the introduction of segments does. For example, consider a characteristic bitvector composed of
𝑥 equally long runs of 1 that are separated by a single 0. R would need 𝑥 chunks to encode that
and so 𝑥 sets of metadata. Instead, just one segment is able to represent the 𝑥 runs using a few
bits per integer and just 1 set of metadata. Indeed, once we introduce the segments as an encoding
scheme, the total number of chunks always decreases, up to 15%. A situation similar to the previous
example often happens in the BWT of highly repetitive texts, and this explains the high presence
of our encoding scheme in the URL and 5gram datasets.
Overall, the hybrid structure of Section 6 that combines segments, EF, BV, and R is able to use

up to 1.34% less space and be just 6.5% slower on average both on rank and select than the hybrid
solution without the segments. The space reduction on these datasets may not seem very impressive,
but we remind the reader that the improved solution uses state-of-the-art encoders and thus it is
already very squeezed. Finally, we observe that our hybrid solution turns out to be slightly slower
because of the few more mathematical operations needed to work on segments in the place of R.

8 CONCLUSIONS AND FUTUREWORK
We have shined a new light on the classical problem of designing rank/select dictionaries by
showing a connection between the input data and the geometry of a set of points in a Cartesian
plane suitably derived from them. We have introduced new data structures based on this idea and

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

proved their good theoretical bounds and competitive experimental performance with respect to
several well-established approaches.

For future work, we mention the study of a relation between classical compressibility measures,
such as entropy, and the measure introduced in Section 2.1 based on the number of segments Y-
approximating the input data. For what concerns Section 2.2, we argue that the space of la_vector
can be further improved by computing segments in such a way that the statistical redundancy
of the correction values in 𝐶 is increased. This could be possibly achieved by jointly optimising
the space occupied by the segments and the space occupied by the compressed 𝐶 , playing on
both the segments’ lengths and their correction values. We also mention the use of vectorised
instructions [37] to achieve fast compression and fast scanning of the corrections in 𝐶 . Finally, we
suggest an in-depth study, design and experimentation of hybrid rank/select structures, possibly
integrating nonlinear models.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for their valuable comments. We also thank the staff
of the Green Data Centre at the University of Pisa for providing us with machines and technical
support to execute the numerous experiments that have been presented in this paper.
This work has been supported in part by the Italian MIUR PRIN project “Multicriteria data

structures and algorithms: from compressed to learned indexes, and beyond” (Prot. 2017WR7SHH),
by Regione Toscana (under POR FSE 2014/2020), and by the EU H2020 projects “SoBigData++:
European Integrated Infrastructure for Social Mining and Big Data Analytics” (grant #871042) and
“HumanE AI Network” (grant #952026).

REFERENCES
[1] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. 2015. Succinct: enabling queries on compressed data. In Proc.

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI). 337–350.
[2] Naiyong Ao, Fan Zhang, Di Wu, Douglas S. Stones, Gang Wang, Xiaoguang Liu, Jing Liu, and Sheng Lin. 2011. Efficient

Parallel Lists Intersection and Index Compression Algorithms Using Graphics Processing Units. PVLDB 4, 8 (2011),
470–481.

[3] Diego Arroyuelo, Mauricio Oyarzún, Senen Gonzalez, and Victor Sepulveda. 2018. Hybrid compression of inverted
lists for reordered document collections. Information Processing & Management 54 (05 2018), 1308–1324. https:
//doi.org/10.1016/j.ipm.2018.05.007

[4] Diego Arroyuelo and Rajeev Raman. 2019. Adaptive Succinctness. In Proc. 26th International Symposium on String
Processing and Information Retrieval (SPIRE). 467–481. https://doi.org/10.1007/978-3-030-32686-9_33

[5] Diego Arroyuelo and Manuel Weitzman. 2020. A Hybrid Compressed Data Structure Supporting Rank and Select
on Bit Sequences. In Proc. 39th International Conference of the Chilean Computer Science Society (SCCC). https:
//doi.org/10.1109/SCCC51225.2020.9281244

[6] Jeremy Barbay and Gonzalo Navarro. 2009. Compressed Representations of Permutations, and Applications. In
Proc. 26th International Symposium on Theoretical Aspects of Computer Science (STACS), Vol. 3. 111–122. https:
//doi.org/10.4230/LIPIcs.STACS.2009.1814

[7] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. 2008. Theory and Practice of Monotone Minimal
Perfect Hashing. ACM Journal of Experimental Algorithmics 16, Article 3.2 (Nov. 2008). https://doi.org/10.1145/1963190.
2025378

[8] Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra. 2021. A “learned” approach to quicken and compress
rank/select dictionaries. In Proc. 23rd SIAM Symposium on Algorithm Engineering and Experiments (ALENEX). 46–59.
https://doi.org/10.1137/1.9781611976472.4

[9] Adam L. Buchsbaum, Glenn S. Fowler, and Raffaele Giancarlo. 2003. Improving Table Compression with Combinatorial
Optimization. J. ACM 50, 6 (Nov. 2003), 825–851. https://doi.org/10.1145/950620.950622

[10] David Richard Clark. 1996. Compact Pat Trees. Ph.D. Dissertation. University of Waterloo, Canada.
[11] Francisco Claude and Gonzalo Navarro. 2008. Practical Rank/Select Queries over Arbitrary Sequences. In Proc. 15th

International Symposium on String Processing and Information Retrieval (SPIRE). 176–187. https://doi.org/10.1007/978-
3-540-89097-3_18

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1016/j.ipm.2018.05.007
https://doi.org/10.1016/j.ipm.2018.05.007
https://doi.org/10.1007/978-3-030-32686-9_33
https://doi.org/10.1109/SCCC51225.2020.9281244
https://doi.org/10.1109/SCCC51225.2020.9281244
https://doi.org/10.4230/LIPIcs.STACS.2009.1814
https://doi.org/10.4230/LIPIcs.STACS.2009.1814
https://doi.org/10.1145/1963190.2025378
https://doi.org/10.1145/1963190.2025378
https://doi.org/10.1137/1.9781611976472.4
https://doi.org/10.1145/950620.950622
https://doi.org/10.1007/978-3-540-89097-3_18
https://doi.org/10.1007/978-3-540-89097-3_18

A Learned Approach to Design Compressed Rank/Select Data Structures 1:27

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3rd
ed.). The MIT Press.

[13] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (2nd ed.). Wiley.
[14] Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static Files. J. ACM 21, 2 (April 1974),

246–260. https://doi.org/10.1145/321812.321820
[15] Robert Mario Fano. 1971. On the number of bits required to implement an associative memory. Memo 61. Massachusetts

Institute of Technology, Project MAC.
[16] Paolo Ferragina, Travis Gagie, and Giovanni Manzini. 2012. Lightweight Data Indexing and Compression in External

Memory. Algorithmica 63, 3 (2012), 707–730. https://doi.org/10.1007/s00453-011-9535-0
[17] Paolo Ferragina, Stefan Kurtz, Stefano Lonardi, and Giovanni Manzini. 2018. Computational Biology. In Handbook of

Data Structures and Applications (2nd ed.), Dinesh P. Mehta and Sartaj Sahni (Eds.). CRC Press, Chapter 59, 917–934.
https://doi.org/10.1201/9781315119335-59

[18] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2020. Why are learned indexes so effective?. In Proc. 37th
International Conference on Machine Learning (ICML). 3123–3132.

[19] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2021. On the performance of learned data structures. Theoretical
Computer Science 871 (2021), 107–120.

[20] Paolo Ferragina and Giovanni Manzini. 2005. Indexing Compressed Text. J. ACM 52, 4 (July 2005), 552–581. https:
//doi.org/10.1145/1082036.1082039

[21] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. 2004. An Alphabet-Friendly FM-Index. In
Proc. 11th International Conference on String Processing and Information Retrieval (SPIRE). 150–160. https://doi.org/10.
1007/978-3-540-30213-1_23

[22] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. 2007. Compressed Representations of
Sequences and Full-Text Indexes. ACM Transactions on Algorithms 3, 2 (May 2007), article 20. https://doi.org/10.1145/
1240233.1240243

[23] Paolo Ferragina, Igor Nitto, and Rossano Venturini. 2011. On Optimally Partitioning a Text to Improve Its Compression.
Algorithmica 61, 1 (2011), 51–74. https://doi.org/10.1007/s00453-010-9437-6

[24] Paolo Ferragina and Giorgio Vinciguerra. 2020. Learned Data Structures. In Recent Trends in Learning From Data, Luca
Oneto, Nicolò Navarin, Alessandro Sperduti, and Davide Anguita (Eds.). Springer, 5–41. https://doi.org/10.1007/978-3-
030-43883-8_2

[25] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic compressed learned index with
provable worst-case bounds. PVLDB 13, 8 (2020), 1162–1175. https://doi.org/10.14778/3389133.3389135

[26] Luca Foschini, Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. 2006. When Indexing Equals Compression:
Experiments with Compressing Suffix Arrays and Applications. ACM Transactions on Algorithms 2, 4 (Oct. 2006),
611–639. https://doi.org/10.1145/1198513.1198521

[27] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. 2014. From theory to practice: plug and play with
succinct data structures. In Proc. 13th International Symposium on Experimental Algorithms (SEA). 326–337. https:
//doi.org/10.1007/978-3-319-07959-2_28

[28] Simon Gog and Matthias Petri. 2014. Optimized succinct data structures for massive data. Software: Practice and
Experience 44, 11 (2014), 1287–1314. https://doi.org/10.1002/spe.2198

[29] Alexander Golynski. 2007. Optimal lower bounds for rank and select indexes. Theoretical Computer Science 387, 3
(2007), 348–359. https://doi.org/10.1016/j.tcs.2007.07.041

[30] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. 2006. Rank/Select Operations on Large Alphabets: a Tool for
Text Indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA). 368–373.

[31] Alexander Golynski, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. 2014. Optimal Indexes for Sparse Bit Vectors.
Algorithmica 69, 4 (Aug. 2014), 906–924. https://doi.org/10.1007/s00453-013-9767-2

[32] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. 2005. Practical implementation of rank
and select queries. In Proc. Poster of 4th Workshop on Efficient and Experimental Algorithms (WEA). 27–38.

[33] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. 2003. High-Order Entropy-Compressed Text Indexes. In Proc.
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

[34] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. 2007. Compressed data structures: dictionaries and
data-aware measures. Theoretical Computer Science 387, 3 (2007), 313–331. https://doi.org/10.1016/j.tcs.2007.07.042

[35] Guy Jacobson. 1989. Space-efficient Static Trees and Graphs. In Proc. 30th IEEE Symposium on Foundations of Computer
Science (FOCS). 549–554.

[36] Sambasiva Rao Kosaraju andGiovanniManzini. 1999. Compression of Low Entropy Strings with Lempel-Ziv Algorithms.
SIAM J. Comput. 29, 3 (1999), 893–911. https://doi.org/10.1137/S0097539797331105

[37] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second through vectorization. Software:
Practice and Experience 45, 1 (2015), 1–29. https://doi.org/10.1002/spe.2203

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/321812.321820
https://doi.org/10.1007/s00453-011-9535-0
https://doi.org/10.1201/9781315119335-59
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1007/978-3-540-30213-1_23
https://doi.org/10.1007/978-3-540-30213-1_23
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1007/s00453-010-9437-6
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/1198513.1198521
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1002/spe.2198
https://doi.org/10.1016/j.tcs.2007.07.041
https://doi.org/10.1007/s00453-013-9767-2
https://doi.org/10.1016/j.tcs.2007.07.042
https://doi.org/10.1137/S0097539797331105
https://doi.org/10.1002/spe.2203

1:28 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra

[38] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. 2015. Genome-Scale Algorithm Design:
Biological Sequence Analysis in the Era of High-Throughput Sequencing. Cambridge University Press.

[39] Veli Mäkinen and Gonzalo Navarro. 2007. Rank and select revisited and extended. Theoretical Computer Science 387, 3
(2007), 332–347. https://doi.org/10.1016/j.tcs.2007.07.013

[40] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. 2010. Storage and Retrieval of Highly Repetitive
Sequence Collections. Journal of Computational Biology 17, 3 (2010), 281–308. https://doi.org/10.1089/cmb.2009.0169

[41] J. Ian Munro. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS). 37–42. https://doi.org/10.1007/3-540-62034-6_35

[42] J. Ian Munro and Venkatesh Raman. 1997. Succinct representation of balanced parentheses, static trees and planar
graphs. In Proc. 38th Annual Symposium on Foundations of Computer Science (FOCS). 118–126. https://doi.org/10.1137/
S0097539799364092

[43] Gonzalo Navarro. 2014. Spaces, Trees, and Colors: the Algorithmic Landscape of Document Retrieval on Sequences.
Comput. Surveys 46, 4, Article 52 (March 2014), 47 pages. https://doi.org/10.1145/2535933

[44] Gonzalo Navarro. 2016. Compact data structures: a practical approach. Cambridge University Press.
[45] Gonzalo Navarro and Veli Mäkinen. 2007. Compressed Full-Text Indexes. Comput. Surveys 39, 1 (April 2007), 61 pages.

https://doi.org/10.1145/1216370.1216372
[46] Gonzalo Navarro and Eliana Providel. 2012. Fast, Small, Simple Rank/Select on Bitmaps. In Proc. 11th International

Symposium on Experimental Algorithms (SEA). 295–306. https://doi.org/10.1007/978-3-642-30850-5_26
[47] Gonzalo Navarro and Javiel Rojas-Ledesma. 2020. Predecessor Search. Comput. Surveys 53, 5, Article 105 (2020),

35 pages.
[48] Daisuke Okanohara and Kunihiko Sadakane. 2007. Practical Entropy-Compressed Rank/Select Dictionary. In Proc. 9th

Workshop on Algorithm Engineering and Experiments (ALENEX). 60–70. https://doi.org/10.1137/1.9781611972870.6
[49] Joseph O’Rourke. 1981. An On-line Algorithm for Fitting Straight Lines Between Data Ranges. Commun. ACM 24, 9

(1981), 574–578. https://doi.org/10.1145/358746.358758
[50] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano Indexes. In Proc. 37th International ACM

Conference on Research & Development in Information Retrieval (SIGIR). 273–282. https://doi.org/10.1145/2600428.
2609615

[51] Giulio Ermanno Pibiri and Rossano Venturini. 2017. Clustered Elias-Fano Indexes. ACM Transactions on Information
Systems 36, 1, Article 2 (April 2017), 33 pages. https://doi.org/10.1145/3052773

[52] Mihai Pǎtraşcu. 2008. Succincter. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
305–313. https://doi.org/10.1109/FOCS.2008.83

[53] Mihai Pǎtraşcu and Mikkel Thorup. 2006. Time-Space Trade-Offs for Predecessor Search. In Proc. of the 38th Annual
ACM Symposium on Theory of Computing (STOC). 232–240. https://doi.org/10.1145/1132516.1132551

[54] Mihai Pǎtraşcu and Emanuele Viola. 2010. Cell-Probe Lower Bounds for Succinct Partial Sums. In Proc. 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 117–122. https://doi.org/10.1137/1.9781611973075.11

[55] Rajeev Raman. 2016. Rank and Select Operations on Bit Strings. In Encyclopedia of Algorithms (2nd ed.), Ming-Yang
Kao (Ed.). Springer, 1772–1775. https://doi.org/10.1007/978-1-4939-2864-4_332

[56] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. 2007. Succinct Indexable Dictionaries with Applications
to Encoding 𝑘-Ary Trees, Prefix Sums and Multisets. ACM Transactions on Algorithms 3, 4 (Nov. 2007), article 43.
https://doi.org/10.1145/1290672.1290680

[57] Kunihiko Sadakane and Roberto Grossi. 2006. Squeezing succinct data structures into entropy bounds. In Proc. 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1230–1239. https://doi.org/10.1145/1109557.1109693

[58] Craig Silverstein. 2005. Google SparseHash. https://github.com/sparsehash/sparsehash.
[59] Fabrizio Silvestri and Rossano Venturini. 2010. VSEncoding: Efficient Coding and Fast Decoding of Integer Lists via

Dynamic Programming. In Proc. 19th ACM International Conference on Information and Knowledge Management (CIKM).
1219–1228. https://doi.org/10.1145/1871437.1871592

[60] Sebastiano Vigna. 2008. Broadword Implementation of Rank/Select Queries. In Proc. 7th International Workshop on
Experimental Algorithms (WEA). 154–168. https://doi.org/10.1007/978-3-540-68552-4_12

[61] Sebastiano Vigna. 2013. Quasi-Succinct Indices. In Proc. 6th ACM International Conference on Web Search and Data
Mining (WSDM). 83–92. https://doi.org/10.1145/2433396.2433409

[62] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. 1999. Managing Gigabytes: Compressing and Indexing Documents
and Images (2nd ed.). Morgan Kaufmann.

[63] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. 2014. Maximum Error-bounded Piecewise
Linear Representation for Online Stream Approximation. The VLDB Journal 23, 6 (2014), 915–937. https://doi.org/10.
1007/s00778-014-0355-0

[64] Huacheng Yu. 2019. Optimal Succinct Rank Data Structure via Approximate Nonnegative Tensor Decomposition. In
Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC). 955–966. https://doi.org/10.1145/3313276.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1016/j.tcs.2007.07.013
https://doi.org/10.1089/cmb.2009.0169
https://doi.org/10.1007/3-540-62034-6_35
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/2535933
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1007/978-3-642-30850-5_26
https://doi.org/10.1137/1.9781611972870.6
https://doi.org/10.1145/358746.358758
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/3052773
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1137/1.9781611973075.11
https://doi.org/10.1007/978-1-4939-2864-4_332
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1145/1109557.1109693
https://github.com/sparsehash/sparsehash
https://doi.org/10.1145/1871437.1871592
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1145/2433396.2433409
https://doi.org/10.1007/s00778-014-0355-0
https://doi.org/10.1007/s00778-014-0355-0
https://doi.org/10.1145/3313276.3316352
https://doi.org/10.1145/3313276.3316352

A Learned Approach to Design Compressed Rank/Select Data Structures 1:29

3316352

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3313276.3316352
https://doi.org/10.1145/3313276.3316352

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 Compressing via linear approximations
	2.1 On compression effectiveness
	2.2 Entropy-coding the corrections

	3 Supporting select and rank
	4 Special sequences
	5 On optimal data partitioning to improve space
	6 On hybrid rank/select dictionaries
	7 Experiments
	7.1 Implementation notes
	7.2 Baselines
	7.3 Datasets
	7.4 Experiments on rank and select
	7.5 Experiments on hybrid rank/select dictionaries

	8 Conclusions and future work
	Acknowledgments
	References

